• Title/Summary/Keyword: User control 3D map

Search Result 15, Processing Time 0.027 seconds

Graphic User Interface System for a Building Cleaning Robot (빌딩청소로봇을 위한 그래픽 사용자 인터페이스 시스템)

  • Jo, Won-Ho;Yi, Soo-Yeong;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.209-215
    • /
    • 2010
  • This paper presents a graphic user interface system consisting of graphic simulator and remote control system for a building cleaning robot. It provides a tool of convenient 3D graphical map construction for real world. The 3D map is reconstructed from existing 2D building CAD data with DXF format by using OpenGL graphic API. Through this system, graphic display of robot's status information, remote control and cleaning scheduling can be done for a building cleaning robot. This proposed system is expected to give efficient way of graphic simulation and remote monitoring and control system for a building cleaning robot.

3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind (시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑)

  • Yoon, Myoung-Jong;Jeong, Gu-Young;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

A 2D / 3D Map Modeling of Indoor Environment (실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법)

  • Jo, Sang-Woo;Park, Jin-Woo;Kwon, Yong-Moo;Ahn, Sang-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF

Efficient Controlling Trajectory of NPC with Accumulation Map based on Path of User and NavMesh in Unity3D

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.55-61
    • /
    • 2020
  • In this paper, we present a novel approach to efficiently control the location of NPC(Non-playable characters) in the interactive virtual world such as game, virtual reality. To control the NPC's movement path, we first calculate the main trajectory based on the user's path, and then move the NPC based on the weight map. Our method constructs automatically a navigation mesh that provides new paths for NPC by referencing the user trajectories. Our method enables adaptive changes to the virtual world over time and provides user-preferred path weights for smartagent path planning. We have tested the usefulness of our algorithm with several example scenarios from interactive worlds such as video games, virtual reality. In practice, our framework can be applied easily to any type of navigation in an interactive world.

A Study on the Web Mapping Method and Application of the Topographic Information in an Open Environment (개방환경에서 지형정보의 웹지도화 방법과 적용에 관한 연구)

  • Kim, Nam-Shin
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.5
    • /
    • pp.563-575
    • /
    • 2007
  • This study aims to investigate a possibility of using topographic information by web mapping in open environments. Web mapping intends to focus on a map analysis and application of the function and geo-visualization. Functions of Web topographic info-map include a spatial analysis, enlargement and minimization, movement, landuse information, user-controling 3 dimension map, landform cross-section analysis, shortest path analysis. The web system adopts SVG(scalable vector graphics), MYSQL, PHP, XML for mapping. SVG has open source policy, so everyone can use it, as well, it is effective on flexible database linkage, cartographic representation. 3D map is intended to represent 3D map by user-controlled sunshine putting pixel opacity by elevation values after making DEM. Landform is designed to show a cross-section analysis and statistics by retrieving height information from database engine with clicking two points on the map. Shortest path analysis within regions uses Dijkstra's algorithm. Near future, resultantly, the area of WebGIS will have to meet more social demands for use-created geo-information and application, so more researches are needed to be web mapping more applicable for users.

  • PDF

A study on the virtual indoor Scene navigation

  • Kim, Yeong-Seok;Jho, Cheung-Woon;Yoon, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.5-153
    • /
    • 2001
  • This paper presents a simple modeling system that constructs 3D models from an indoor cylindrical environment map using all of the available geometry of the interior structure such as vertical and horizontal lines and parallel and perpendicular planes. The indoor scene abstract model is created through this system and the navigation through the process of 3D reconstruction. This system first automatically detects the vanishing points in a cylindrical environment map from parallel lines and planes, and determines the indoor scene topology previously defined using this information. The determined topology enables he user intervention UI simply construct a 3D model by using the photogrammetry. The modeling system can be ...

  • PDF

A Greedy Merging Method for User-Steered Mesh Segmentation

  • Ha, Jong-Sung;Park, Young-Jin;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.25-29
    • /
    • 2007
  • In this paper, we discuss the mesh segmentation problem which divides a given 3D mesh into several disjoint sets. To solve the problem, we propose a greedy method based on the merging priority metric defined for representing the geometric properties of meaningful parts. The proposed priority metric is a weighted function using five geometric parameters, those are, a distribution of Gaussian map, boundary path concavity, boundary path length, cardinality, and segmentation resolution. In special, we can control by setting up the weight values of the proposed geometric parameters to obtain visually better mesh segmentation. Finally, we carry out an experiment on several 3D mesh models using the proposed methods and visualize the results.

Light 3D Modeling with mobile equipment (모바일 카메라를 이용한 경량 3D 모델링)

  • Ju, Seunghwan;Seo, Heesuk;Han, Sunghyu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.107-114
    • /
    • 2016
  • Recently, 3D related technology has become a hot topic for IT. 3D technologies such as 3DTV, Kinect and 3D printers are becoming more and more popular. According to the flow of the times, the goal of this study is that the general public is exposed to 3D technology easily. we have developed a web-based application program that enables 3D modeling of facial front and side photographs using a mobile phone. In order to realize 3D modeling, two photographs (front and side) are photographed with a mobile camera, and ASM (Active Shape Model) and skin binarization technique are used to extract facial height such as nose from facial and side photographs. Three-dimensional coordinates are generated using the face extracted from the front photograph and the face height obtained from the side photograph. Using the 3-D coordinates generated for the standard face model modeled with the standard face as a control point, the face becomes the face of the subject when the RBF (Radial Basis Function) interpolation method is used. Also, in order to cover the face with the modified face model, the control point found in the front photograph is mapped to the texture map coordinate to generate the texture image. Finally, the deformed face model is covered with a texture image, and the 3D modeled image is displayed to the user.

A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design (캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구)

  • Lee, Dong Myung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

Remote Image Control by Hand Motion Detection (손동작 인지에 의한 원격 영상 제어)

  • Lim, Jung-Geun;Han, Kyongho
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.369-374
    • /
    • 2012
  • This paper handles the UX implementation for system control using the visual input information of hand motion. Kinect sensor from Microsoft is used to acquire the user's skeleton image from the 3-D depth map at a rate of 30 frames per sec. and eventually knows the x-y coordinates of hand joints. The x-y coordinate value changes of hands between the present frame and next frame shows the direction of changes and rotation of changes and the various hand motion is used as a UX input command for remote image control on smart TV, etc. Through the experiments, we showed the implementation of the proposed idea.