• 제목/요약/키워드: User Feedback Evaluation

검색결과 78건 처리시간 0.026초

Development of the Information Delivery System for the Home Nursing Service (가정간호사업 운용을 위한 정보전달체계 개발 I (가정간호 데이터베이스 구축과 뇌졸중 환자의 가정간호 전산개발))

  • Park, J.H;Kim, M.J;Hong, K.J;Han, K.J;Park, S.A;Yung, S.N;Lee, I.S;Joh, H.;Bang, K.S
    • Journal of Home Health Care Nursing
    • /
    • 제4권
    • /
    • pp.5-22
    • /
    • 1997
  • The purpose of the study was to development an information delivery system for the home nursing service, to demonstrate and to evaluate the efficiency of it. The period of research conduct was from September 1996 to August 31, 1997. At the 1st stage to achieve the purpose, Firstly Assessment tool for the patients with cerebral vascular disease who have the first priority of HNS among the patients with various health problems at home was developed through literature review. Secondly, after identification of patient nursing problem by the home care nurse with the assessment tool, the patient's classification system developed by Park (1988) that was 128 nursing activities under 6 categories was used to identify the home care nurse's activities of the patient with CAV at home. The research team had several workshops with 5 clinical nurse experts to refine it. At last 110 nursing activities under 11 categories for the patients with CVA were derived. At the second stage, algorithms were developed to connect 110 nursing activities with the patient nursing problems identified by assessment tool. The computerizing process of the algorithms is as follows: These algorithms are realized with the computer program by use of the software engineering technique. The development is made by the prototyping method, which is the requirement analysis of the software specifications. The basic features of the usability, compatibility, adaptability and maintainability are taken into consideration. Particular emphasis is given to the efficient construction of the database. To enhance the database efficiency and to establish the structural cohesion, the data field is categorized with the weight of relevance to the particular disease. This approach permits the easy adaptability when numerous diseases are applied in the future. In paralleled with this, the expandability and maintainability is stressed through out the program development, which leads to the modular concept. However since the disease to be applied is increased in number as the project progress and since they are interrelated and coupled each other, the expand ability as well as maintainability should be considered with a big priority. Furthermore, since the system is to be synthesized with other medical systems in the future, these properties are very important. The prototype developed in this project is to be evaluated through the stage of system testing. There are various evaluation metrics such as cohesion, coupling and adaptability so on. But unfortunately, direct measurement of these metrics are very difficult, and accordingly, analytical and quantitative evaluations are almost impossible. Therefore, instead of the analytical evaluation, the experimental evaluation is to be applied through the test run by various users. This system testing will provide the viewpoint analysis of the user's level, and the detail and additional requirement specifications arising from user's real situation will be feedback into the system modeling. Also. the degree of freedom of the input and output will be improved, and the hardware limitation will be investigated. Upon the refining, the prototype system will be used as a design template. and will be used to develop the more extensive system. In detail. the relevant modules will be developed for the various diseases, and the module will be integrated by the macroscopic design process focusing on the inter modularity, generality of the database. and compatibility with other systems. The Home care Evaluation System is comprised of three main modules of : (1) General information on a patient, (2) General health status of a patient, and (3) Cerebrovascular disease patient. The general health status module has five sub modules of physical measurement, vitality, nursing, pharmaceutical description and emotional/cognition ability. The CVA patient module is divided into ten sub modules such as subjective sense, consciousness, memory and language pattern so on. The typical sub modules are described in appendix 3.

  • PDF

A Research on e-portfolio as a Learning Tool: A Case Study of Kyung Hee University (학습성찰도구로서 e-포트폴리오 활성화를 위한 연구: 경희대학교 사례를 중심으로)

  • Kang, In-Ae;Ryu, Seung-Hyun;Kang, Youn-Kyoung
    • The Journal of the Korea Contents Association
    • /
    • 제11권2호
    • /
    • pp.495-506
    • /
    • 2011
  • Portfolio has recently come to gain more attention from school as an alternative evaluation tool and a self-reflective learning tool for learning. After literature reviews about the case studies on the use of portfolio in higher education including both universities in Korea and abroad, this study attempted, first, to analyze the current e-portfolio system running in Kyung Hee University for the undergraduate students starting from the spring semester, 2010, and then, suggested the ways the system can be more actively utilized among the students, and simultaneously, acquiring more interest and participation from both the faculty members and the school administrators. The data collected from the survey and reflective journals of the students suggested 1) more user-friendly, easy-to-edit version of the system, 2) more diverse modes and functions of the system which, therefore, are able to adjust well to the specific and unique features of subjects or majors of the students, and 3) collaborative learning environments among the students and between the students and the faculty members from which students can share, participate, interact with each other, getting useful feedback from those co-learners and faculty members. Eventually the study aimed to enhance the recognition of the participants about the importance of portfolio as a learning tool for self-reflective learning and authentic evaluation of the students.

A Study on the Web GUI Design Guidelines for the Ease of Using T-shirt Customization (티셔츠 커스터마이징 사용편의성을 위한 웹 GUI 디자인 가이드라인 연구)

  • Lee, Saem;Jeong, Je-Yoon;Nam, Won-Suk
    • Journal of the Korea Convergence Society
    • /
    • 제12권4호
    • /
    • pp.105-112
    • /
    • 2021
  • Unlike conventional online shopping malls that handle simple product sales, customization services have to be provided with a user-centered and smooth customizable work environment because of differences that buyers have to customize themselves. To study the ease of use of T-shirt customization web GUI, three websites that provide T-shirt customization services were selected to analyze the current status of T-shirt customization websites. Through prior research, we establish the evaluation principle as consistency and clarity, operability, feedback, coping with errors, sharing and ease of search. Based on this, the T-shirt customization web GUI design guidelines were drafted and three delphi surveys were conducted on GUI-related experts to prove the validity of the web GUI guidelines evaluation items that are effective in customizing T-shirts. This study is expected to contribute to increasing the production and usability of the T-shirt customization web and to be used as an effective reference for customization web GUI design.

Design and Implementation of Quality Broker Architecture to Web Service Selection based on Autonomic Feedback (자율적 피드백 기반 웹 서비스 선정을 위한 품질 브로커 아키텍처의 설계 및 구현)

  • Seo, Young-Jun;Song, Young-Jae
    • The KIPS Transactions:PartD
    • /
    • 제15D권2호
    • /
    • pp.223-234
    • /
    • 2008
  • Recently the web service area provides the efficient integrated environment of the internal and external of corporation and enterprise that wants the introduction of it is increasing. Also the web service develops and the new business model appears, the domestic enterprise environment and e-business environment are changing caused by web service. The web service which provides the similar function increases, most the method which searches the suitable service in demand of the user is more considered seriously. When it needs to choose one among the similar web services, service consumer generally needs quality information of web service. The problem, however, is that the advertised QoS information of a web service is not always trustworthy. A service provider may publish inaccurate QoS information to attract more customers, or the published QoS information may be out of date. Allowing current customers to rate the QoS they receive from a web service, and making these ratings public, can provide new customers with valuable information on how to rank services. This paper suggests the agent-based quality broker architecture which helps to find a service providing the optimum quality that the consumer needs in a position of service consumer. It is able to solve problem which modify quality requirements of the consumer from providing the architecture it selects a web service to consumer dynamically. Namely, the consumer is able to search the service which provides the optimal quality criteria through UDDI browser which is connected in quality broker server. To quality criteria value decision of each service the user intervention is excluded the maximum. In the existing selection architecture, the objective evaluation was difficult in subjective class of service selecting of the consumer. But the proposal architecture is able to secure an objectivity with the quality criteria value decision where the agent monitors binding information in consumer location. Namely, it solves QoS information of service which provider does not provide with QoS information sharing which is caused by with feedback of consumer side agents.

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • 제24권3호
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.

Learning Material Bookmarking Service based on Collective Intelligence (집단지성 기반 학습자료 북마킹 서비스 시스템)

  • Jang, Jincheul;Jung, Sukhwan;Lee, Seulki;Jung, Chihoon;Yoon, Wan Chul;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • 제20권2호
    • /
    • pp.179-192
    • /
    • 2014
  • Keeping in line with the recent changes in the information technology environment, the online learning environment that supports multiple users' participation such as MOOC (Massive Open Online Courses) has become important. One of the largest professional associations in Information Technology, IEEE Computer Society, announced that "Supporting New Learning Styles" is a crucial trend in 2014. Popular MOOC services, CourseRa and edX, have continued to build active learning environment with a large number of lectures accessible anywhere using smart devices, and have been used by an increasing number of users. In addition, collaborative web services (e.g., blogs and Wikipedia) also support the creation of various user-uploaded learning materials, resulting in a vast amount of new lectures and learning materials being created every day in the online space. However, it is difficult for an online educational system to keep a learner' motivation as learning occurs remotely, with limited capability to share knowledge among the learners. Thus, it is essential to understand which materials are needed for each learner and how to motivate learners to actively participate in online learning system. To overcome these issues, leveraging the constructivism theory and collective intelligence, we have developed a social bookmarking system called WeStudy, which supports learning material sharing among the users and provides personalized learning material recommendations. Constructivism theory argues that knowledge is being constructed while learners interact with the world. Collective intelligence can be separated into two types: (1) collaborative collective intelligence, which can be built on the basis of direct collaboration among the participants (e.g., Wikipedia), and (2) integrative collective intelligence, which produces new forms of knowledge by combining independent and distributed information through highly advanced technologies and algorithms (e.g., Google PageRank, Recommender systems). Recommender system, one of the examples of integrative collective intelligence, is to utilize online activities of the users and recommend what users may be interested in. Our system included both collaborative collective intelligence functions and integrative collective intelligence functions. We analyzed well-known Web services based on collective intelligence such as Wikipedia, Slideshare, and Videolectures to identify main design factors that support collective intelligence. Based on this analysis, in addition to sharing online resources through social bookmarking, we selected three essential functions for our system: 1) multimodal visualization of learning materials through two forms (e.g., list and graph), 2) personalized recommendation of learning materials, and 3) explicit designation of learners of their interest. After developing web-based WeStudy system, we conducted usability testing through the heuristic evaluation method that included seven heuristic indices: features and functionality, cognitive page, navigation, search and filtering, control and feedback, forms, context and text. We recruited 10 experts who majored in Human Computer Interaction and worked in the same field, and requested both quantitative and qualitative evaluation of the system. The evaluation results show that, relative to the other functions evaluated, the list/graph page produced higher scores on all indices except for contexts & text. In case of contexts & text, learning material page produced the best score, compared with the other functions. In general, the explicit designation of learners of their interests, one of the distinctive functions, received lower scores on all usability indices because of its unfamiliar functionality to the users. In summary, the evaluation results show that our system has achieved high usability with good performance with some minor issues, which need to be fully addressed before the public release of the system to large-scale users. The study findings provide practical guidelines for the design and development of various systems that utilize collective intelligence.

Correlation between Head Movement Data and Virtual Reality Content Immersion (헤드 무브먼트 데이터와 가상현실 콘텐츠 몰입도 상관관계)

  • Kim, Jungho;Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • 제26권5호
    • /
    • pp.500-507
    • /
    • 2021
  • The virtual reality industry has an opportunity to take another leap forward with the surge in demand for non-face-to-face content and interest in the metaverse after Covid-19. Therefore, in order to popularize virtual reality content along with this trend, high-quality content production and storytelling research suitable for the characteristics of virtual reality should be continuously conducted. In order for content to which virtual reality characteristics are applied to be effectively produced through user feedback, a quantitative index that can evaluate the content is needed. In this study, the process of viewing virtual reality contents was analyzed and head movement was set as a quantitative indicator. Afterwards, the experimenter watched five animations and analyzed the correlation between recorded head movement information and immersion. As a result of the analysis, high immersion was shown when the head movement speed was relatively slow, and it was found that the head movement speed can be used significantly as an index indicating the degree of content immersion. The result derived in this way can be used as a quantitative indicator that can verify the validity of the storytelling method applied after the prototype is produced when the creator creates virtual reality content. This method can improve the quality of content by quickly identifying the problems of the proposed storytelling method and suggesting a better method. This study aims to contribute to the production of high-quality virtual reality content and the popularization of virtual reality content as a basic research to analyze immersion based on the quantitative indicator of head movement speed.

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • 제27권3호
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.