• Title/Summary/Keyword: User's Sensitivity

Search Result 103, Processing Time 0.029 seconds

The Change Characteristic of the Stimulation and Satisfaction of the Brain Wave Reaction to the Visual Stimulation in the Space - Focus on the Influence of the Halogen and Wall - (시각적 공간자극에 나타난 뇌파반응의 자극 정도와 만족도 변화특성 - 할로겐 조명과 벽의 영향을 중심으로 -)

  • Seo, Ji-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.99-107
    • /
    • 2015
  • The purpose of this study is to analyze the change of visual stimulus of users to the space through the experiment of EEG and the satisfaction of users depends on the lighting. To do that, the results measured with EEG experiment focusing on Beta ${\beta}$ were compared to each other to figure out difference in the changes of the activation of human brain on lighting's situation as the lighting off and on in the same space. The difference in the results was verified according to the characteristic of users which classified with 4 types of the spatial sensitivities. The results of this study are as following. Firstly, the spacial sensitivity of user is to communicate well with the different senses with stimulus through interaction among the elements. At this time, the brain plays a major role in build the spacial sensitivity of users as the place to make form. Secondly, there are the differences in the activation of brain depends on lighting situation even in the same space. The stimulus into the brain became generally stronger in images with lighting on than off. Especially, the response in the occipital lobe which connected with the visual center turn out strongly in the image of 'modern natural'. Because the visual stimulus interact well with the bright color, the reflectional texture and the rough texture painted the dark color. Thirdly, the satisfaction of users changed with lighting in the space. But we could know that the satisfaction of users isn't be related to the visual stimulus through the results of this study. Finally, there isn't the difference in the activation degree of brain according to the characteristic which are preference of users into 4 types of the spatial sensitivity through the results came from ANCOVA(analysis of covariance) with SPSS Program 22.

Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER

  • Lim, Sang Gyu;No, Hee Cheon;Lee, Sang Won;Kim, Han Gon;Cheon, Jong;Lee, Jae Min;Ohk, Seung Min
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • A passive containment cooling system (PCCS) has been developed as advanced safety feature for innovative power reactor (iPOWER). Passive systems are inherently less stable than active systems and the PCCS encountered the flashing-induced instability previously identified. The objective of this study is to develop stability maps for flashing-induced instability using MARS (Multi-dimensional Analysis of Reactor Safety) code. Firstly, we conducted a series of sensitivity analysis to see the effects of time step size, nodalization, and alternative MARS user options on the onset of flashing-induced instability. The riser nodalization strongly affects the prediction of flashing in a long riser of the PCCS, while time step size and alternative user options do not. Based on the sensitivity analysis, a standard input and an analysis methodology were set up to develop the stability maps of PCCS. We found out that the calculated equilibrium quality at the exit of the riser as a stability boundary above 5 kW/㎡ was approximately 1.2%, which was in good agreement with Furuya's results. However, in case of a very low heat flux condition, the onset of instability occurred at the lower equilibrium quality. In addition, it was confirmed that inlet throttling reduces the unstable region.

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Characterization of three-dimensional ultrasonic anemometer using phase measurement (위상측정방식을 이용한 3차원 초음파 풍향풍속계의 특성분석)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 2006
  • Ultrasonic anemometers using pulse envelope detection-based method are standard instruments in most meteorological studies. In this paper, a new phase measurement method is tried to achieve the enhanced resolution without changing dimensions. The measurement sensitivity, dynamic range, and measurement speed of the new instrument are 0.2 mm/s, 13.3 m/s, and 13 measurements/sec, respectively. A graphic user interface is added to show the velocity and direction of the wind with the speed of sound and temperature of the wind in the 3 dimensional space. The new anemometer could be useful for the measurement of the air speed, the flow of fluids, and even air flow inside the downtown buildings.

User-centered Design of m-Learning System: Moodle On The Go

  • Minovic, Miroslav;Stavljanin, Velimir;Milovanovic, Milos;Starcevic, Dusan
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.80-95
    • /
    • 2010
  • In order to truly integrate e-Learning system into regular curriculum at a university, mobile access to Learning Management Systems has to be enabled. Mobile devices have the potential to be integrated into the classroom, because they contain unique characteristics such as portability, social interactivity, context sensitivity, connectivity and individuality. Adoption of Learning Management Systems by students is still on the low rate, mostly because of poor usability of existing e-Learning systems. Our initial research has confirmed this hypothesis. Usability issue is rising to the higher level on the mobile platform, because of the mobile devices' limited screen size, input interfaces and bandwidth, and also because of the context of use. Our second hypothesis was that it is wrong to consider a mobile device as a surrogate for desktop or laptop personal computer (PC). By just adopting the existing Learning Management System on mobile devices with adaptive technologies such as Google proxy, we do not acquire the satisfactory results. Usability can prove to be even lower compared to desktop application. One possible solution to the problem could be development of rich client applications for today's mobile devices that would raise the usability to a higher level. We developed a PocketPC prototype application by using user-centered design principles, which we presented as a third alternative in usability research conducted among university students. Results gathered in such a way have confirmed that development of e-Learning system, in order to be widely accepted by students, needs to have the user(student) in the center of development process.

A Hybrid Tendency of Contemporary Landscape Design (현대조경설계의 하이브리드적 경향)

  • Jang Il-Young;Kim Jin-Seon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.80-98
    • /
    • 2006
  • This study originated from following questions. What can we understand the conception of deconstruction, which has been the core idea of new discourses developed in various ways since modernism? How can this question be interpreted in landscape design? What is the conceptional frame of integration the prominent hybrid post-genre movements and phenomena? The frame can be epitomized with the deconstruction phenomenon. 'Deconstruction' is the core conception appeared in late or post-modern ages in the embodiment of modernity and can be viewed as an integrating or a hybrid phenomenon between areas or genres in formative arts. Therefore, the author regards the hybrid movements widely witnessed in the post contemporary formative arts as one of the most important indicators of de-constructive signs. It is safe to say that the phenomenon of this integration or hybridism, of course, does not threaten the identity of landscape design but serves as an opportunity to extend the areas of landscape design. One of the consequences of this integration or hybridism is the voluntary participation of users who have been alienated in the production of the meanings of design works and hybrid landscape design with the hybridization of genres that is characterized with transformation in forms. This view is based on the distinction between hybridization of interactions between the designer (the subject) and the user (the object), and hybridization of synesthesia. Generally speaking, this is an act of destroying boundaries of the daily life and arts. At the same time, it corresponds to vanishing of modern aesthetics and emerging of post-contemporary aesthetics which is a new aesthetic category like sublimeness. This types of landscape design tries to restore humans' sensibility and perceptions restrained by rationality and recognition in previous approach and to express non-materialistic characteristics with precaution against excessive materialism in the modern era. In light of these backgrounds, the study aims to suggest the hybrid concept and to explorer a new landscape design approach with this concept, in order to change the design structure from 'completed' or 'closed' toward 'opened' and to understand the characteristics of interactions between users and designs. This new approach is expected to create an open-space integrating complexity and dynamics of users. At the same time, it emphasizes senses of user' body with synesthesia and non-determination. The focus is placed on user participation and sublimity rather than on aesthetic beauty, which kind of experience is called simulacre. By attaching importance to user participation, the work got free from the material characteristics, and acceptance from the old practice of simple perception and contemplation. The boundaries between the subject and object and the beautiful and ordinary, from the perspective of this approach, are vanished. Now everything ordinary can become an artistic work. Western dichotomy and discrimination is not effective any more. And there is 'de-construction' where there is perfect equality between ordinary daily life and beautiful arts. Thus today's landscape design pays attention to the user and uses newly perceived sensitivity by pursing obscure and unfamiliar things rather than aesthetic beauty. Space is accordingly defined to take place accidentally as happening and event, not as volume of shape. It's the true way to express spatiality of landscape design. That's an attempt to reject conventional concepts about forms and space, which served as the basis for landscape design, and to search for new things.

Stiffness-based Optimal Design of Shear Wall-Frame Structure System using Sensitivity Analysis (민감도 해석을 이용한 전단벽-골조 구조시스템의 강성최적설계)

  • Lee Han-Joo;Kim Ho-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.63-71
    • /
    • 2006
  • This study presents the effective stiffness-based optimal technique to control Quantitatively lateral drift for shear wall-frame structure system using sensitivity analysis. To this end, the element stiffness matrices are constituted to solve the compatibility problem of displacement degree of freedom between the frame and shear wall. Also, lateral drift constraint to introduce the approximation concept that can preserve the generality of the mathematical programming and can effectively solve the large scaled problems is established. And, the section property relationships for shear wall and frame members are considered in order to reduce the number of design variables and differentiate easily the stiffness matrices. Specifically, constant-shape assumption which is uniformly varying in size during optimal process is applied in frame structure. The thickness or length of shear wall can be changed depending on user's intent. Two types of 20 story shear wall-frame structure system are presented to illustrate the features of the stiffness-based optimal design technique.

Ergonomic Design of Necklace Type Wearable Device

  • Lee, Jinsil;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.281-292
    • /
    • 2017
  • Objective: This study aims to identify important physical design variables in designing a necklace type wearable device, and to present design guidelines to maximize comfort that a user feels upon wearing the device. Background: Interests in fitness culture and personal health are on the rise recently. In such a situation, demand for necklace type wearable devices is projected to increase a lot, as the devices enable users to use their hands freely and to enjoy various contents through connection with mobile devices. However, the necklace type wearable device's comfort was assessed to have the lowest comfort in a running situation, where human body moves up and down and left and right more than other devices wearable on other human body parts. Therefore, the usability of a necklace type wearable device was low. In this regard, studies on identification of the variables affecting user comfort upon wearing a necklace type wearable device and on physical design direction maximizing comfort and usability are needed. Method: A pretest and a main test were carried out to draw the direction of necklace type wearable device design. In the pretest, wearing evaluation on the diverse types of devices released in the market was conducted to draw physical design variables of the devices affecting comfort. Furthermore, variables significantly affecting the comfort of a device were selected through an analysis of variance (ANOVA). In the main test, anthropometry was performed, and information on anthropometric items corresponding to the design variables selected in the pretest was acquired. Based on the pretest results and the anthropometric information in the main test, the present study produced design guidelines maximizing the comfort of a necklace type wearable device with regard to major design variables upon dynamic tasks. Results: According to the pretest results, the variables having effects on comfort were the angle of side points, width, and height. Due to interactions between variables, those need to be simultaneously considered upon designing a device. Upon dynamic tasks, the angle of side points and width of a device was designed to be smaller than mean angle of the trapezius muscle and neck width, and thus attachment to human body was high. As height was designed to be larger than mean neck front and rear point width, comfort was higher due to feeling of stability. Conclusion: Because user sensitivity to comfort was high at human body's inflection points, a device needs to be designed for users not to feel high pressure on specific body parts with the device fitting human body shape well. A design considering user's situation is also required in further studies.

A Study on the Empirical Model for Predicting the Physical Suitability of Office Chairs (사무용 의자의 물리적 적합도 예측 모델링에 관한 연구)

  • 김진호;이현우;박수찬
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.151-165
    • /
    • 2001
  • The purpose of this study is to develop systematic methods for evaluating the suitability of a seat and build an empirical model for predicting the suitability of a seat. The following research schemes were pursued to achieve the objectives - Development of suitable chair dimensions - Analysis scheme for decomposing the human-product interface system - Development of model for evaluating suitability. As a result, we uncovered six dominant suitability dimensions for the design of a comfortable seat that is related to the physical dimension of a body, Here, six suitability dimensions were identified as the dimensions that represent the human sensitivity and psychological feeling on comfortable seats. Also, 43 human-interface elements (HIE's) such as seat height, seat width, seat depth, tilting angle, seat surface etc. were investigated. HIE was generally defined as the physical characteristic of manufacturing goods, and it had close related to the body dimension of a user and environment that it was used.

  • PDF

A Study on Application of the Emotion Design to Office Space in 21st (21세기 업무공간의 감성디자인 적용에 관한 연구)

  • Han, Jee-Youn;Shin, Hong-Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.139-146
    • /
    • 2007
  • This study is tended to analyze the characteristics of the emotional office environment so that digital technologies may adapt to the rapidly progressing social structure in a flexible way, investigate the interior composition of the changing office space and the element and direction of design and then present the indoor environment appropriate to it with the desirable alternative to the emotional office. The recognition of emotionality becomes so important that it is called 'emotional society'. Emotional design, which is mostly concern about user's consensus & experiences and in the space, is appeared on office. Emotional design is understanded from a interactive point of view, human and interior-space. The important factors of this study are light, color, immateriality and fun sensitivity The purpose of this study is to examine the emotional design by analysis of multifarious spaces. Office space Is designed emotional and experienced in the future.