References
- T.L. Schulz, Westinghouse AP1000 advanced passive plant, Nucl. Eng. Des. 236 (2006) 1547-1557. https://doi.org/10.1016/j.nucengdes.2006.03.049
- W. Zhou, B. Wolf, S. Revankar, Assessment of RELAP5/MOD3.3 condensation models for the tubes bundle condensation in the PCCS of ESBWR, Nucl. Eng. Des. 264 (2013) 111-118. https://doi.org/10.1016/j.nucengdes.2012.08.041
- S.W. Lee, S. Heo, H.U. Ha, H.G. Kim, The concept of the innovative power reactor, Nucl. Eng. Technol. 49 (2017) 1431-1441. https://doi.org/10.1016/j.net.2017.06.015
- A.M. Bakhmet'ev, M.A. Bol'shukhin, V.V. Vakhrushev, A.M. Khizbullin, O.V. Makarov, V.V. Bezlepkin, S.E. Semashko, I.M. Ivkov, Experimental validation of the cooling loop for a passive system for removing heat from the AES-2006 protective envelope design for the LENINGRADSKAYA nuclear power plant site, Atom. Energy 106-3 (2009) 185-190. https://doi.org/10.1007/s10512-009-9150-1
- J. Xing, D. Song, Y. Wu, HPR1000: advanced pressurized water reactor with active and passive safety, Engineering 2 (2016) 79-87. https://doi.org/10.1016/J.ENG.2016.01.017
- IAEA, Natural Circulation in Water Cooled Nuclear Power Plants: Phenomena, Models, and Methodology for System Reliability Assessments, vol. 12, International Atomic Energy Agency, 2005. IAEA-TECDOC-1474.
- S.G. Lim, D.H. Kim, J.M. Lee, S.W. Lee, H.G. Kim, H.C. No, Prediction of heat removal performance for passive containment cooling system using MARS-KS code version 1.14, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18-19, 2017.
- E.H. Wissler, H.S. Isbin, N.R. Amundson, Oscillatory Behavior of a Two-phase Natural Circulation Loop, vol. 2, American Institute of Chemical Engineers, 1956, pp. 157-162. No. 2.
- M. Furuya, F. Inada, T.H.J.J. van der Hagen, Flashing-induced density wave oscillation in a natural circulation BWR-mechanism of instability and stability map, Nucl. Eng. Des. 235 (2005) 1557-1569. https://doi.org/10.1016/j.nucengdes.2005.01.006
- A. Manera, T.H.J.J. van der Hagen, Stability of natural circulation cooled boling water reactors during startup: experimental results, Nucl. Technol. 143 (2003) 77-88. https://doi.org/10.13182/NT03-A3399
- C.P. Marcel, M. Rohde, T.H.J.J. Van Der Hagen, Experimental and numerical investigations on flashing-induced instabilities in a single channel, Exp. Therm. Fluid Sci. 33 (2009) 1197-1208. https://doi.org/10.1016/j.expthermflusci.2009.08.001
- C.P. Marcel, M. Rohde, T.H.J.J. van der Hagen, Experimental investigations on flashing-induced instabilities in one and two-parallel channels: a comparative study, Exp. Therm. Fluid Sci. 34 (2010) 879-892. https://doi.org/10.1016/j.expthermflusci.2010.02.002
- A. Manera, U. Rohde, H.M. Prasser, T.H.J.J. Van Der Hagen, Modelling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the two-phase flow code FLOCAL, Nucl. Eng. Des. 235 (2005) 1517-1535. https://doi.org/10.1016/j.nucengdes.2005.01.008
- S. Yokobori, N. Abe, H. Nagasaka, S. Tsunoyama, Two-phase flow natural circulation characteristics inside BWR vessel, in: Proceeding of the Fifth International Topical Meeting on Reactor Thermal Hydraulics, American Nuclear Society, Salt Lake City, UT, USA, 1992. September 21-24.
- J.H. Lin, R.L. Huang, C.D. Sawyer, SBWR Core thermal hydraulic analysis during startup, in: Proceeding of the Second JSME-ASME Joint International Conference on Nuclear Engineering, American Society of Mechanical Engineers, San Francisco, CA, USA, 1993. March 21-24.
- J.G.M. Andersen, F. Inada, L.A. Klebanov, TRACG analyses of flashing instability during startup, in: Proceedings of the 3rd International Conference on Nuclear Engineering ICONE-3, American Society of Mechanical Engineers, Kyoto, Japan, 1995. April 23-27.
- T. Sawai, M. Kaji, S. Nakanishi, Stability and non-linear dynamics in natural circulation loop at low pressure condition, in: Proceedings of the 2nd International Symposium on Two-phase Flow Modelling and Experimentation, Pisa, Italy, May 23-26, 1999.
- F. Inada, M. Furuya, A. Yasuo, Thermo-hydraulic instability of boiling natural circulation loop induced by flashing (analytical consideration), Nucl. Eng. Des. 200 (2000) 187-199. https://doi.org/10.1016/S0029-5493(99)00334-9
- D.D.B. Van Bragt, W.J.M. De Kruijf, A. Manera, T.H.J.J. Van Der Hagen, H. Van Dam, Analytical modeling of flashing-induced instabilities in a natural circulation cooled boiling water reactor, Nucl. Eng. Des. 215 (2002) 87-98. https://doi.org/10.1016/S0029-5493(02)00043-2
- I. Tiselj, G. Cerne, Some comments on the behavior of the RELAP5 numerical scheme at very small time step, Nucl. Sci. Eng. 134 (2000) 306-311. https://doi.org/10.13182/NSE134-306
- Y. Kozmenkov, U. Rohde, A. Manera, Validation of the RELAP5 code for the modelling of flashing-induced instabilities under natural-circulation conditions using experimental data from the CIRCUS test facility, Nucl. Eng. Des. 243 (2012) 168-175. https://doi.org/10.1016/j.nucengdes.2011.10.053
- V.A. Phung, P. Kudinov, D. Grishchenko, M. Rohde, Input calibration and validation of RELAP5 against CIRCUS-IV single channel tests on natural circulation two-phase flow instability, Sci. Technol. Nucl. Install. 2015 (2015) 1-14.
- W.D. Fullmer, V. Kumar, C.S. Brooks, Validation of RELAP5/MOD3.3 for subcooled boiling, flashing and condensation in a vertical annulus, Prog. Nucl. Energy 93 (2016) 205-217. https://doi.org/10.1016/j.pnucene.2016.08.013
- B. Ozar, C.S. Brooks, T. Hibiki, T. Ishii, Interfacial area transport of vertical upward steam-water two-phase flow in an annular channel at elevated pressures, Int. J. Heat Mass Transf. 57 (2013) 504-518. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.059
- Q. Wang, P. Gao, X. Chen, Z. Wang, Y. Huang, An investigation on flashing-induced natural circulation instabilities based on RELAP5 code, Ann. Nucl. Energy 121 (2018) 210-222. https://doi.org/10.1016/j.anucene.2018.07.035
- X. Chen, P. Gao, S. Tan, Z. Yu, C. Chen, An experimental investigation of flow boiling instability in a natural circulation loop, Int. J. Heat Mass Transf. 117 (2018) 1125-1134. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.076
- J.J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS1.3.1, Ann. Nucl. Energy 26 (1999) 1611-1642. https://doi.org/10.1016/S0306-4549(99)00039-0
- Information Systems Laboratories, Inc.. RELAP5/MOD3.3 Code Manual Volume II: Appendix A Input Requirements, Information Systems Laboratories, Inc., 2006. NUREG/CR-5535/Rev P3-Vol II App A.
- Information Systems Laboratories, Inc.. RELAP5/MOD3.3 Code Manual Volume I: Code Structure, System Models, and Solution Methods, Information Systems Laboratories, Inc., 2006. NUREG/CR-5535/Rev P3-Vol I.
- Information Systems Laboratories, Inc.. RELAP5/MOD3.3 Code Manual Volume II: User's Guide and Input Requirements, Information Systems Laboratories, Inc., 2006. NUREG/CR-5535/Rev P3-Vol II.
- J.A. Boure, A.E. Bergles, L.S. Tong, Review of two-phase flow instability, Nucl. Eng. Des. 25 (1973) 165-192. https://doi.org/10.1016/0029-5493(73)90043-5
- S. Kakac, B. Bon, A review of two-phase flow dynamic instabilities in tube boiling systems, Int. J. Heat Mass Transf. 51 (2008) 399-433. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.026
Cited by
- A review on numerical modelling of flashing flow with application to nuclear safety analysis vol.182, 2020, https://doi.org/10.1016/j.applthermaleng.2020.116002
- Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design vol.53, pp.8, 2020, https://doi.org/10.1016/j.net.2021.01.039
- Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes vol.53, pp.8, 2020, https://doi.org/10.1016/j.net.2021.03.001
- Experimental study on transient thermal-hydraulic characteristics of an open natural circulation for the passive containment cooling system vol.179, 2020, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121680
- Degradation of condensation heat transfer on a vertical cylinder by a light noncondensable gas mixed with air-steam mixtures vol.130, 2020, https://doi.org/10.1016/j.icheatmasstransfer.2021.105779