• Title/Summary/Keyword: Used aluminum can

Search Result 647, Processing Time 0.022 seconds

Fabrication and Characterization of AAO Template with Variation of the Phosphoric Acid Amount of the Etching Solution (에칭용액의 인산 첨가량에 따른 양극산화 알루미늄 템플레이트의 제작 및 특성)

  • Jo, Ye-Won;Kim, Yong-Jun;Yeo, Jin-Ho;Lee, Sung-Gap;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.448-451
    • /
    • 2014
  • Anodic aluminum oxides (AAO) fabricated by the two-step anodizing process have attracted much attention for the fabrication of nano template because of pore structure with high aspect ratio, low cost process and ease of fabrication. AAOs are characterized by a homogeneous morphology of parallel pores that grow perpendicular to the template surface with a narrow distribution of diameter, length and inter-pores spacing, all of which can be easily controlled by suitably choosing of the anodizing parameters such as pH of the electrolyte, anodizing voltage and duration of anodizing. In this study, AAO templates were characterized by X-ray diffraction and field-emission scanning electron microscope (FE-SEM). The dependence of the pore size change according to the amount of addition of phosphoric acid, which was used to remove the initial alumina oxide layer, was not observed.

The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet (알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향)

  • Kim, J.G.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

Characteristics of AE Signals from Fatigue Crack Propagation and Penetration of a Surface Crack in 6061 Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Existing surface defects in structural members often act as sites of fatigue crack initiation, and if undetected, these cracks may grow through the thickness of the member, leading to catastrophic failure of the structure. Thus, in-service monitoring of fatigue cracks through reliable and effective nondestructive techniques is an important ingredient in the leak-before-break (LBB) design and safe operation of defects critical structures. An advanced, waveform-based, acoustic emission (AE) technique has been used in this paper to study the characteristics of the signals emanating from the initiation, growth and through-the -thickness penetration of surface fatigue crack in a 6061 aluminum plate. The goal of this experimental study is to determine whether the evolution of the fatigue crocks could be identified from the properties of the waveforms produced during the tests. The AE waveform signals detected at different stages of crack growth was found to have different temporal and spectral characteristics. The data analysis technique presented here can be applied to real-time monitoring of the initiation and propagation of fatigue cracks in structural components.

  • PDF

Feasibility of MFC (Macro-Fiber Composite) Transducers for Guided Wave Technique

  • Ren, Gang;Yun, Dongseok;Seo, Hogeon;Song, Minkyoo;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.264-269
    • /
    • 2013
  • Since MFC(macro-fiber composite) transducer has been developed, many researchers have tried to apply this transducer on SHM(structural health monitoring), because it is so flexible and durable that it can be easily embedded to various kinds of structures. The objective of this paper is to figure out the benefits and feasibility of applying MFC transducers to guided wave technique. For this, we have experimentally tested the performance of MFC patches as transmitter and sensors for excitation and reception of guided waves on the thin aluminum alloy plate. In order to enhance the signal accuracy, we applied the FIR filter for noise reduction as well as used STFT(short-time Fourier transform) algorithm to image the guided wave characteristics clearly. From the results, the guided wave generated based on MFC showed good agreement with its theoretical dispersion curves. Moreover, the ultrasonic Lamb wave techniques based on MFC patches in pitch-catch manner was tested for detection of surface notch defects of which depths are 10%, 20%, 30% and 40% of the aluminum plate thickness. Results showed that the notch was detectable well when the notch depth was 10% of the thickness or greater.

Fatigue Life Prediction of Composite Patch for Edge Cracked Aluminum Plate (모서리균열이 있는 알루미늄판의 복합재 패치보수시 수명예측 연구)

  • Kim, Wie-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • One of the hot issues in composite patching is to reduce the thermal residual stresses between composite patch and aluminum surface which occurs after bonding of composite patch. In this study, the edge crack patching is adopted for different curing cycles. For the analysis, three layer Mindlin plate elements are used, and Paris' law is adopted to predict the fatigue life of composite patch plate. The analysis results show a good agreement with the experimental fatigue life and this technique can be applied for the prediction of fatigue life of aircraft structures.

A Study on Energy Harvesting Technique using Piezoelectric Element (압전소자를 이용한 에너지 수확에 관한 연구)

  • Yun, S.N.;Kim, D.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2009
  • This paper presents the energy harvesting technique which is carried out by vibration system with a piezoelectric element. In this study, low frequency characteristics of the piezoelectric element bonded to the aluminum cantilever were experimentally investigated. The piezoelectric element of size of $45L{\times}11W{\times}0.6H$ and piezoelectric constant($d_{31}$ ) of $-180{\times}10^{-12}C/N$ was used. The material of cantilever is an aluminum and two kinds of cantilever of which dimensions are (150, 190)$[mm]{\times}13[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the magnetic type vibrator and the vibrator was operated by power input with a sine wave. The characteristics of requency and mass variation of cantilever end part such as 0, 2.22, 4.34, 5.87, 8.66, 11.01 [g] were investigated. Finally, this paper suggests a method of generating electrical energy with a piezoelectric element using wind, an energy source that is easily applied and from which we can obtain "clean" energy.

  • PDF

Surface Modification of AC4A Aluminum Alloy Castings Using Friction Thermomechanical Process (마찰열기계적 공정을 이용한 AC4A 합금의 표면개질)

  • Yoon, Tae-Wook;Ko, Young-Bong;Ko, Byung-Chun;Park, Kyeung-Chae
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.5
    • /
    • pp.230-237
    • /
    • 2010
  • FTMP(friction thermo-mechanical process) is an adaptation of friction stir welding, and can be used as a generic process to modify the microstructure at selective locations. In this study, in order to analyze characteristics of surface modification of ACA4 castings by FTMP, change of rotating speed(R/S) and traveling speed(T/S) of tool were applied as conditional parameter. Analysis of microstructure, hardness, surface roughness and depth of modified zone(MZ) were searched. The best condition were obtained at R/S 600 rpm and T/S 100 mm/min. At this time, hardness was 82 HV, the surface roughness was 0.07 mm and the depth at MZ was 1.72 mm. Free defects microstructure and fine Si particles formation and strong forging effects were analyzed at MZ.

Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications (3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Fluoride and nitrate removal in small water treatment plants using electro-coagulation (전기응집을 이용한 소규모 수도시설의 질산성질소와 불소이온 제거)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.767-775
    • /
    • 2011
  • In this study we verified if the electro-coagulation process can treat properly the nitrate and fluoride that are not removed well in the conventional small water treatment plants which usually employ chlorination and filtration only. As we gave a change of electrode material and gap-distance between electrodes, removal efficiency of the nitrate and fluoride was determined by electro-coagulation process which were equipped with aluminum and stainless steel (SUS304) electrodes. In addition, electrode durability was investigated by determination of electrodes mass change during the repetitive experiments. Removal efficiency was great when aluminum was used as an anode material. Nitrate removals increased as electric density and number of electrodes increased, but fluoride removal was less sensitive to both parameters than nitrate. After 10 minutes of contact time with the current density from $1{\times}10^{-3}$ to $3{\times}10^{-3}A/cm^{2}$, nitrate and fluoride concentration ranged from 9.2 to 1.2mg/L and from 0.02 to 0.01mg/L, which satisfied the regulation limits. Regardless of the repeating number of experiments, removal efficiency of both ions were almost similar and the change of electrode mass ranged within ${\pm}$0.5%, indicating that the loss of the electrode mass is not so much great under the limited circumstances.

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.