• Title/Summary/Keyword: Used Blade

Search Result 1,088, Processing Time 0.032 seconds

A Study on the Flow Characteristics of Mixer by Impeller Types (임펠러 형상에 따른 교반기의 유동특성에 관한 연구)

  • 양창조;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.899-905
    • /
    • 2003
  • Mixers are used in several industrial applications where it is necessary to strongly mix reactants in a short period of time (eg. reaction injection molding, ceramics manufacturing, crystallization). However, despite their widespread use, mixing flow characteristics in these systems have not been rigorously investigated. Influence of blade shapes on the mixing time and the power consumption per unit volume in two kinds of impeller including the mixing effects are studied by PIV experiment. A series of the experiments were carried out to achieve a better mixing effect in simple baffle arrangement and tall vessel with modified impellers(two kinds of blades : pitched blade turbine and rushton turbine). Results show that periodic vortex from the mixing layer is predominant and related unsteady flow characteristics prevail over the entire region.

Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis (준삼차원 방법에 의한 원심 압축기의 성능예측)

  • Ahn, S.J.;Oh, H.W.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Experiment of Turbine Blade Forging Process using Model Material and SLA Prototype Die Set (SLA 시금형을 이용한 터빈블레이드 단조공정의 모델 실험)

  • Park, K.;Shin, M.C.;Yang, D.Y.;Cho, C.R.;Kim, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.71-77
    • /
    • 1995
  • In this paper, an experimental study of hot forging process is carried out using plasticine. In order to manufacture the die set, Stere olithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is executed using plasticine and the SLA prototype die set. Through the experiment ,it turned out that SLA prototype is suitable to the die set for the plasticine workpiece, and theformability and forming load of turbine blade forging are predicted.

  • PDF

Aerodynamic Calculations in Hover of KUH Rotor Blade (한국형 기동헬기 블레이드의 제자리 비행 공력 해석)

  • Kang, Hee-Jung;Kim, Seung-Ho;Jung, Mun-Seung;Lee, Hee-Dong;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

Shape Design of Passages for Turbine Blade Using Design Optimization System (최적화설계시스템을 이용한 터빈블레이드 냉각통로의 형상설계)

  • Jeong Min-Joong;Lee Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1013-1021
    • /
    • 2005
  • In this paper, we developed an automatic design optimization system for parametric shape optimization of cooling passages inside axial turbine blades. A parallel three-dimensional thermoelasticity finite element analysis code from an open source system was used to perform automatic thermal and stress analysis of different blade configuration. The developed code was connected to an evolutionary optimizer and built in a design optimization system. Using the optimization system, 279 feasible and optimal solutions were searched. It is provided not only one best solution of the searched solutions, but also information of variation structure and correlation of the 279 solutions in function, variable, and real design spaces. To explore design information, it is proposed a new interpretation approach based on evolutionary clustering and principal component analysis. The interpretation approach might be applicable to the increasing demands in the general area of design optimization.

Development of the Front End Cooling Fan of the Car (자동차 프런트 엔드 쿨링팬 개발)

  • Oh, Keon-Je;Lee, Su-Hwa;Bae, Chun-Keun;Ju, Phil-Ho;Kim, Jong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.887-892
    • /
    • 2003
  • A front-end cooling fan is designed and tested in the present study. The design technique is developed using the one-dimensional inviscid flow through the fan blade, the empirical equations, and the experimental correlations. Design data for the blade can be obtained for a given flow rate and a pressure rise. A parabolic function is used to generate a sweep of the fan. Characteristics of the blade geometry are discussed between the huh and the tip. The fan is tested in the fan test unit. The measured volume flow rate at the operating point is in good agreement with that of the design specifications. Sound pressure levels of the noise are predicted with the Ffowcs Williams-Hawkings equations. Calculation results of the sound pressure level(SPL) 1m away from the fan are obtained and cpmpared with the measured data.

  • PDF

Reverse Flow on Blade-Surface of Propeller Fan (프로펠러 홴 날개 위의 역류 유동)

  • Kim, Jae Won;Nam, Im Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.7-14
    • /
    • 2001
  • Design and development of a propeller fan for a cooling tower have been accomplished by both numerical prediction of performance and experimental validation with a wind tunnel. Main interest lies on blade geometry of a fan for optimal design of aerodynamic performance. A commercial program, Fine/Turbo used for the present numerical estimation, gives us engineering information such as flow details near the blades and flow rate of the system. The numerical results are compared with precise experimental output and show good agreement in comparison between the two data. Also new proposed model of a blade shows improved performance relative to present running model in market.

  • PDF

Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method (반응표면법을 이용한 축류 압축기의 동익형상 최적설계)

  • Song, You-Joon;Lee, Jeong-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

A New Blade Profile for Bidirectional Flow Properly Applicable to a Two-stage Jet Fan

  • Nishi, Michihiro;Liu, Shuhong;Yoshida, Kouichi;Okamoto, Minoru;Nakayama, Hiroyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • A reversible axial flow fan called jet fan has been widely used for longitudinal ventilation in road tunnels to secure a safe and comfortable environment cost-effectively. As shifting the flow direction is usually made by only switching the rotational direction of an electric motor due to heavy duty, rotor blades having identical aerodynamic performance for bidirectional flow should be necessary. However, such aerodynamically desirable blades haven't been developed sufficiently, since most of the related studies have been done from the viewpoint of unidirectional flow. In the present paper, we demonstrate a method to profile the blade section suitable for bidirectional flow, which is validated by studying the aerodynamic performances of rotor blades of a two-stage jet fan experimentally and numerically.

Study on the Optimal Shape of Low Noise, New Concept Fan for Refrigerator (냉장고용 저소음 신형상홴의 최적 형상에 관한 연구)

  • 정용규;김창준;백승조;전완호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.645-650
    • /
    • 2002
  • In this paper, new concept, low noise axial fan was developed. The fan was designed to operate at high-pressure condition inside the refrigerator. This fan - we call it Alpha fan - has small turbo blades at trailing edge of axial fan. These turbo blades make alpha fan operate at high pressure and low noise condition. In order to find out the optimal value of design parameters, 6-sigma method was used. The design parameters are ratio between inner and outer diameter, Height, Install angle and Install position of turbo blade. Optimal value of turbo blade was found out and the noise generated from this fan is reduced about 3dB(A).

  • PDF