• Title/Summary/Keyword: Use of Big Data

Search Result 1,144, Processing Time 0.033 seconds

A Study on a Way to Utilize Big Data Analytics in the Defense Area (국방분야 빅데이터 분석의 활용가능성에 대한 고찰)

  • Kim, Seong-Woo;Kim, Gak-Gyu;Yoon, Bong-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.1-19
    • /
    • 2014
  • Recently, one of the core keywords in information technology (IT) as well as areas such as business management is big data. Big data is a term that includes technology, personnel, and organization required to gather/manage/analyze collection of data sets so large and complex that it becomes difficult to manage and analyze using traditional tools. The military has been accumulating data for a long period due to the organization's characteristic in placing emphasis on reporting and records. Considering such characteristic of the military, this study verifies the possibility of improving the performance of the military organization through use of big data and furthermore, create scientific development of operation, strategy, and support environment. For this purpose, the study organizes general status and case studies related to big data, traces back examples of data utilization by Korean's national defense sector through US military data collection and case studies, and proposes the possibility of using and applying big data in the national defense sector.

Marketing Performance and Big Data Use During the COVID-19 Pandemic: A Case Study of SMEs in Indonesia

  • WIBOWO, Sampurno;SURYANA, Yuyus;SARI, Diana;KALTUM, Umi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.571-578
    • /
    • 2021
  • The outbreak of the COVID-19 pandemic, which began in 2020, had a significant impact on the economy and business activities worldwide. Large companies, as well as small businesses were affected, many of them had to scale down or divert their businesses, and some even had to stop. This extraordinary situation requires business people to make innovations and adjustments to survive during a pandemic. Entering the digital era, business players are helped by the ease of internet access, which will make it easier for SME players to get data from their consumers. Business actors can use this data to innovate and create new creations to improve business performance during this pandemic. This research aims to identify how small and medium enterprises can take advantage of Big Data to improve marketing performance through innovation and value creation. The research methodology used the in this research is quantitative method. The respondents are SME producers of food and beverage, with a total of 150 respondents. The results in the study indicate that all the proposed hypotheses are accepted. The most significant influence is found on the relationship of Big Data to value creation. The lowest effect was obtained from the relationship between Big Data and marketing performance through the mediation variable and innovation capability.

A Study on the Key Factors Affecting Big Data Use Intention of Agriculture Ventures in Terms of Technology, Organization and Environment: Focusing on Moderating Effect of Technical Field (농업벤처기업의 빅데이터 활용의도에 영향을 미치는 기술·조직·환경 관점의 핵심요인 연구: 기술분야의 조절효과를 중심으로)

  • Ahn, Mun Hyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.249-267
    • /
    • 2021
  • The use of big data accumulated along with the progress of digitalization is bringing disruptive innovation to the global agricultural industry. Recently, the government is establishing an agricultural big data platform and a support organization. However, in the domestic agricultural industry, the use of big data is insufficient except for some companies in the field of cultivation and growth. In this context, this study identifies factors affecting the intention to use big data in terms of technology, organization and environment, and also confirm the moderating effect of technical field, focusing on agricultural ventures which should be the main entities in creating innovation by using big data. Research data was obtained from 309 agricultural ventures supported by the A+ Center of FACT(Foundation of AgTech Commercialization and Transfer), and was analyzed using IBM SPSS 22.0. As a result, Among technical factors, relative advantage and compatibility were found to have a significant positive (+) effect. Among organizational factors, it was found that management support had a positive (+) effect and cost had a negative (-) effect. Among environmental factors, policy support were found to have a positive (+) effect. As a result of the verification of the moderating effect of technology field, it was found that firms other than cultivation had a moderating effect that alleviated the relationship between all variables other than relative advantage, compatibility, and competitor pressure and the intention to use big data. These results suggest the following implications. First, it is necessary to select a core business that will provide opportunities to generate new profits and improve operational efficiency to agricultural ventures through the use of big data, and to increase collaboration opportunities through policy. Second, it is necessary to provide a big data analysis solution that can overcome the difficulties of analysis due to the characteristics of the agricultural industry. Third, in small organizations such as agricultural ventures, the will of the top management to reorganize the organizational culture should be preceded by a high level of understanding on the use of big data. Fourth, it is important to discover and promote successful cases that can be benchmarked at the level of SMEs and venture companies. Fifth, it will be more effective to divide the priorities of core business and support business by agricultural venture technology sector. Finally, the limitations of this study and follow-up research tasks are presented.

A Study on Utilization Strategy of Big Data for Local Administration by Analyzing Cases (사례분석을 통한 지방행정의 빅데이터 활용 전략)

  • Noh, Kyoo-Sung
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2014
  • As Big Data's value is perceived and Government 3.0 is announced, there is a growing interest in Big Data. However, it won't be easy for each public institute or local government to apply Big Data systematically and make a successful achievement despite lacking of specific alternative plan or strategy. So, this study tried to suggest strategies to use Big Data after arranging the area which local government utilize it in. As a result, utilization areas of local administration's Big Data are divided into four areas; recognizing and corresponding the abnormal phenomenon, predicting and corresponding the close future, corresponding analyzed situation and developing new policy(administration service), and citizen customized service. In addition, strategies about how to use Big Data are suggested; stepwise approach, user's requirements analysis, critical success factors based implementation, pilot project, result evaluation, performance based incentive, building common infrastructure.

A Study on the Effect of Analytic Resources to Business Performance under Big Data Environments (빅데이터 환경에서 분석 자원이 기업 성과에 미치는 영향)

  • Kim, Seung-Hyun;Park, Jooseok;Park, Jea-Hong;Kim, Inhyun
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • With the rapid development of information technology, we can manage not only structured data but also unstructured data. Big data environments drive new business values. This study examines the effect of analytic resources to business performance under big data environments. Recent worldwide reports showed empirical performance results of big data applications. Compared to these reports, we attempt to analyze resources of big data applications to companies in Korea. This study results in current status of big data use in Korea. and will help to develop a maturity model of big data applications.

  • PDF

A Study on Efficient Building Energy Management System Based on Big Data

  • Chang, Young-Hyun;Ko, Chang-Bae
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2019
  • We aim to use public data different from the remote BEMS energy diagnostics technology and already established and then switch the conventional operation environment to a big-data-based integrated management environment to operate and build a building energy management environment of maximized efficiency. In Step 1, various network management environments of the system integrated with a big data platform and the BEMS management system are used to collect logs created in various types of data by means of the big data platform. In Step 2, the collected data are stored in the HDFS (Hadoop Distributed File System) to manage the data in real time about internal and external changes on the basis of integration analysis, for example, relations and interrelation for automatic efficient management.

Does Big Data Matter to Value Creation? : Based on Oracle Solution Case (Does Big Data Matter to Value Creation? : 오라클(Oracle) 솔루션을 중심으로)

  • Kim, Yonghee;You, Eungjoon;Kang, Miseon;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.39-48
    • /
    • 2012
  • It is essential that firm makes a rational and scientific decision making and creates a news value for the future direction. To do so, many firms attempt to collect meaningful data and find the filtered and refined implication for the better customer relationship and the active market drive through the various analytic tools. Among the possible IT solutions, utilization of 'Big Data' is becoming more attractive and necessary in such a way that it would help firms obtain the systemized and demanding information and facilitate their decision making process to keep up with the market needs. In this paper, it introduces the concepts and development of 'Big Data' recognized as a IT resource and solution under the rapidly changing firm environment. This study also presents the several firm cases using Big Data' and the Oracle's total data management and analytic solutions in order to support the application of 'Big Data'. Finally this paper provides a holistic viewpoint and realistic approach on use of 'Big Data' to create a new value.

A Big Data Preprocessing using Statistical Text Mining (통계적 텍스트 마이닝을 이용한 빅 데이터 전처리)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.470-476
    • /
    • 2015
  • Big data has been used in diverse areas. For example, in computer science and sociology, there is a difference in their issues to approach big data, but they have same usage to analyze big data and imply the analysis result. So the meaningful analysis and implication of big data are needed in most areas. Statistics and machine learning provide various methods for big data analysis. In this paper, we study a process for big data analysis, and propose an efficient methodology of entire process from collecting big data to implying the result of big data analysis. In addition, patent documents have the characteristics of big data, we propose an approach to apply big data analysis to patent data, and imply the result of patent big data to build R&D strategy. To illustrate how to use our proposed methodology for real problem, we perform a case study using applied and registered patent documents retrieved from the patent databases in the world.

A review of big data analytics and healthcare (빅데이터 분석과 헬스케어에 대한 동향)

  • Moon, Seok-Jae;Lee, Namju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.76-82
    • /
    • 2020
  • Big data analysis in healthcare research seems to be a necessary strategy for the convergence of sports science and technology in the era of the Fourth Industrial Revolution. The purpose of this study is to provide the basic review to secure the diversity of big data and healthcare convergence by discussing the concept, analysis method, and application examples of big data and by exploring the application. Text mining, data mining, opinion mining, process mining, cluster analysis, and social network analysis is currently used. Identifying high-risk factor for a certain condition, determining specific health determinants for diseases, monitoring bio signals, predicting diseases, providing training and treatments, and analyzing healthcare measurements would be possible via big data analysis. As a further work, the big data characteristics provide very appropriate basis to use promising software platforms for development of applications that can handle big data in healthcare and even more in sports science.

Neo-Chinese Style Furniture Design Based on Semantic Analysis and Connection

  • Ye, Jialei;Zhang, Jiahao;Gao, Liqian;Zhou, Yang;Liu, Ziyang;Han, Jianguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2704-2719
    • /
    • 2022
  • Lately, neo-Chinese style furniture has been frequently noticed by product design professionals for the big part it played in promoting traditional Chinese culture. This article is an attempt to use big data semantic analysis method to provide effective design research method for neo-Chinese furniture design. By using big data mining program TEXTOM for big data collection and analysis, the data obtained from typical websites in a set time period will be sorted and analyzed. On the basis of "neo-Chinese furniture" samples, key data will be compared, classification analysis of overall data, and horizontal analysis of typical data will be performed by the methods of word frequency analysis, connection centrality analysis, and TF-IDF analysis. And we tried to summarize according to the related views and theories of the design. The research results show that the results of data analysis are close to the relevant definitions of design. The core high-frequency vocabulary obtained under data analysis, such as popular, furniture, modern, etc., can provide a reasonable and effective focus of attention for the designs. The result obtained through the systematic sorting and summary of the data can be a reliable guidance in the direction of our design. This research attempted to introduce related big data mining semantic analysis methods into the product design industry, to supply scientific and objective data and channels for studies on design, and to provide a case on the practical application of big data analysis in the industry.