• 제목/요약/키워드: Use Data

Search Result 28,664, Processing Time 0.053 seconds

Comparison of the Performance of Clustering Analysis using Data Reduction Techniques to Identify Energy Use Patterns

  • Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Ahn, Joseph
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.559-563
    • /
    • 2015
  • Identification of energy use patterns in buildings has a great opportunity for energy saving. To find what energy use patterns exist, clustering analysis has been commonly used such as K-means and hierarchical clustering method. In case of high dimensional data such as energy use time-series, data reduction should be considered to avoid the curse of dimensionality. Principle Component Analysis, Autocorrelation Function, Discrete Fourier Transform and Discrete Wavelet Transform have been widely used to map the original data into the lower dimensional spaces. However, there still remains an ongoing issue since the performance of clustering analysis is dependent on data type, purpose and application. Therefore, we need to understand which data reduction techniques are suitable for energy use management. This research aims find the best clustering method using energy use data obtained from Seoul National University campus. The results of this research show that most experiments with data reduction techniques have a better performance. Also, the results obtained helps facility managers optimally control energy systems such as HVAC to reduce energy use in buildings.

  • PDF

OBJECT-ORIENTED CLASSIFICATION AND APPLICATIONS IN THE LUCC

  • Yang, Guijun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1221-1223
    • /
    • 2003
  • With speediness of economy, the structure of land use has taken lots of change. How can we quickly and exactly obtain detailed land use/cover change information, and then we know land resource amount, quality, distributing and change direction. More and more high resolution satellite systems are under development. So we can make good use of RS data, existed GIS data and GPS data to extract change information and update map. In this paper a fully automated approach for detecting land use/cover change using remote sensing data with object-oriented classification based on GIS data, GPS data is presented (referring to Fig.1). At same time, I realize integrating raster with vector methods of updating the basic land use/land cover map based on 3S technology and this is becoming one of the most important developing direction in 3S application fields; land-use and cover change fields over the world. It has been successful applied in two tasks of The Ministry of Land and Resources P.R.C and taken some of benefit.

  • PDF

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

Application of Data Mining on Simultaneous Activities on the Time Use Survey

  • Nam, Ki-Seong;Kim, Hee-Jea
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.737-749
    • /
    • 2003
  • This Paper analyzed simultaneous activities of the time use survey by Korea National Statistical Office to use data mining's association rule. The survey of National Statistical Office in 1999 considered general analysis for main activities like that personal care(eating), employment and study, leisure, travel by purpose. But if we use the association rule, we can found the ratio of simultaneous activities at the same time. And also we can found the probability that another activities practise if we act one particular activity. Using this association rule of data mining we can do more developed and analytical sociological study.

  • PDF

MyData Personal Data Store Model(PDS) to Enhance Information Security for Guarantee the Self-determination rights

  • Min, Seong-hyun;Son, Kyung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.587-608
    • /
    • 2022
  • The European Union recently established the General Data Protection Regulation (GDPR) for secure data use and personal information protection. Inspired by this, South Korea revised their Personal Information Protection Act, the Act on Promotion of Information and Communications Network Utilization and Information Protection, and the Credit Information Use and Protection Act, collectively known as the "Three Data Bills," which prescribe safe personal information use based on pseudonymous data processing. Based on these bills, the personal data store (PDS) has received attention because it utilizes the MyData service, which actively manages and controls personal information based on the approval of individuals, and it practically ensures their rights to informational self-determination. Various types of PDS models have been developed by several countries (e.g., the US, Europe, and Japan) and global platform firms. The South Korean government has now initiated MyData service projects for personal information use in the financial field, focusing on personal credit information management. There is also a need to verify the efficacy of this service in diverse fields (e.g., medical). However, despite the increased attention, existing MyData models and frameworks do not satisfy security requirements of ensured traceability, transparency, and distributed authentication for personal information use. This study analyzes primary PDS models and compares them to an internationally standardized framework for personal information security with guidelines on MyData so that a proper PDS model can be proposed for South Korea.

Analysis of Factors Affecting Big Data Use Intention of Korean Companies : Based on public data availability (국내기업의 빅데이터 이용의도에 미치는 영향요인 분석 : 공공데이터 활용여부를 기준으로)

  • Jeong, HwaMin;Lee, SangYun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.478-485
    • /
    • 2019
  • This is an exploratory study to examine factors affecting South Korean companies' intentions to use big data technology and services based on whether the companies use public data or not. This study, using R, conducted chi-squared tests and logistic regression analysis. As a result of the logistic regression analysis, cost reduction had a positive effect on the big data-use intentions in companies that use public data, whereas with companies that do not use public data, customer satisfaction had a positive impact, and support for decision-making had a negative impact on the intention to use big data. Recently, the South Korean government has focused on improving the utilization of public data and big data. However, as a result of this study, the use of public data and big data in South Korea is still insufficient. Yet, considering that the data utilized for this study was created in 2017, additional study using public data and big data is also required.

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF

Analysis of Simultaneous Activities on the Time Use Survey Using Data Mining

  • Nam, Ki-Seong;Kim, Hee-Jea
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.159-170
    • /
    • 2003
  • This Paper analyzed simultaneous activities of the time use survey by Korea National Statistical Office to use data mining‘s association rule. The survey of National Statistical Office in 1999 considered general analysis for simultaneous activities. But if we use the association rule, we can found the ratio of particular activities at the same time. And we found the probability that another activities practise if we act one particular activity. Using this association rule of data mining we can do more developed and analytical sociological study.

  • PDF

APPLICATION OF BACKSCATTER AND COHERENCE DATA ON C AND L BAND FOR LANDCOVER IDENTIFICATION IN TROPICS

  • Nakayama, Mikiyasu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.267-270
    • /
    • 1999
  • Use of coherence data from operational satellite based SAR sensors has been experimented both on C and L band to identify landcover in tropics. While coherence data proved useful to improve accuracy in landcover identification, such data are not readily available. On the other hand, integrated use of backcatter data by multiple satellites is readily feasible. The very question to be asked is whether integration of backscatter data on multiple bands (e.g. C and L band) is either inferior or superior to use of coherence data. We therefore still do not have a solid clue to answer to the very question. The aim of this study is to evaluate the performance of "integrated use" of backscatter data on C and L band (by ERS and JERS respectively) to identify landcover, vis-a-vis the same by combination of backscatter and coherence data by single satellite. The study was carried out for an area in the southern part of the Sumatra Island, Indonesia. The area has been intensively converted from natural forest into plantation. Five categories of landcover exist in this study area. By ERS-1, only 2 or 3 classes may be identified with the backscatter data alone, while adding the coherence data could delineate 4 classes. By JERS-1, only 3 to 4 classes may be identified with the backscatter data alone, while 4 classes could be clearly delineated by adding the coherence data. By integrating backscatter data on two bands, 4 to 5 classes may be identified. It represents the best results among cases examined. The outcome of the study suggests that integrated use of backscatter data on two bands by ERS and JERS is as powerful as use of backscatter and coherence data on single band by one of these satellite.

  • PDF

Use of Nondestructive Evaluation Methods in Bridge Management Systems (교량유지관리시스템에 있어서 비파괴 시험의 효율적 활용 방안)

  • 심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1291-1296
    • /
    • 2000
  • A basis for the direct use of data from nondestructive evaluation methods in bridge management systems is presented. Bridge management systems use integer-valued condition ratings to recognize conditions of bridge elements, to model progression of deterioration, and to determine repair needs. Data from nondestructive evaluation methods can inform management systems on the extent of damage, on the initiation of deterioration processes, and on the exposure of bridge elements to aggressive agents. In addition, data obtained through nondestructive evaluation methods allow the formation of models of specific deterioration process. The use of these data in bridge management systems requires redefinition of condition ratings together with the creation of procedures for automated interpretation of data. By these action, nondestructive evaluation methods are directly used to assign condition ratings, and condition ratings are made into terse form of NDE data that are compatible with present day bridge management systems. This paper reports work in progress to strategic use of nondestructive evaluation methods in bridge management system.