• Title/Summary/Keyword: Usage temperature range

Search Result 51, Processing Time 0.023 seconds

Recent Developments in Piezoelectric Crystals

  • Zhang, Shujun;Li, Fei;Yu, Fapeng;Jiang, Xiaoning;Lee, Ho-Yong;Luo, Jun;Shrout, T.R.
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.419-439
    • /
    • 2018
  • Piezoelectric materials are essential parts of the electronics and electrical equipment used for consumer and industrial applications, such as ultrasonic piezoelectric transducers, sensors, actuators, transformers, and resonators. In this review, the development of piezoelectric materials and the figures of merit for various electromechanical applications are surveyed, focusing on piezoelectric crystals, i.e., the high-performance relaxor-$PbTiO_3$-based perovskite ferroelectric crystals and nonferroelectric high-temperature piezoelectric crystals. The uniqueness of these crystals is discussed with respect to different usages. Finally, the existing challenges and perspective for the piezoelectric crystals are discussed, with an emphasis on the temperature-dependent properties, from cryogenic temperatures up to the ultrahigh-temperature usage range.

Feasibility study on district heating Magok area by sewage water heat source (마곡지구 하수열에너지이용 타당성 검토)

  • Lee, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.357-362
    • /
    • 2009
  • As a unutilized energy, treated sewage water locates widespread near urban areas. From the previous survey, the sewage water is reported to hold energy potential up to 36,000 Tcal/year, which was 2.1% of the total domestic energy consumption and 9.7% of the energy usage in the household and business sector in 2006. Temperature of the sewage water differs locally, but its range is observed in a range of $20{\sim}25^{\circ}C$ in summer and $8{\sim}13^{\circ}C$ in winter. Since the temperature range of the sewage water has a better seasonal distribution about $5{\sim}10^{\circ}C$ compared to ambient air, it is a promising heat sink for summer or heat source for winter. The sewage water is also a high quality heat source from its abundant quantity and uniform temperature. Considering the ambient temperature of Korea is very low in winter, a heat pump system using the sewage water can be an alternative to prevent problems of capacity deficiency and frost formation.

  • PDF

Atmospheric Concentrations and Temperature- Dependent Air-Surface Exchange of Organochlorine Pesticides in Seoul (도시 대기 중 유기염소계 살충제의 농도수준 및 배출 특성)

  • 최민규;여현구;천만영;선우영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.275-284
    • /
    • 2002
  • Atmospheric concentrations of organochlorine pesticides (OCPs) in Seoul, South Korea between July 1999 and May 2000 were determined to investigate concentration distribution in air, relationship between concentrations and meteorological conditions, and apportionment of sources e.g. local sources (air- surface exchange) and long range transport. Endosulfan and $\alpha$-HCH were the highest concentrations in atmosphere with values typcally ranging from 10s to l00s of pg/㎥. These high concentrations may be attributed to their usage, period and chemical property (Koa). All OCPs also showed elevated levels during the summer and were positively correlated with temperature. This would suggest that a seasonal enhancement was due to (re)volatilization from secondary sources and application during the warmer months. The temperature dependence of atmospheric concentrations of OCPs were investigated using plots of the natural logarithm of partial pressure (In P) vs reciprocal mean temperatures (1/T), and environmental phase-transition energies were calculated for each of the pesticides. For OCPs, temperature dependence was statistically significant (at the 99.99% confidence level) and temperature accounted for 35~95% of the variability in concentrations. The relatively higher slopes and phase-transition energies for $\alpha$-, ${\gamma}$-chlordane, endosulfan and endosulfan sulfate suggested that volatilization from local sources influenced their concentrations. The relatively lower those for $\alpha$-, ${\gamma}$-HCH, p, p'-DDE and heptachlor epoxide also suggested that volatilization from local sources and long range transport influenced their concentrations.

Development of QCM dew point sensor and its sensing characteristics study (수정미소저울 노점센서 제작 및 반응특성 연구)

  • Kwon, Su-Yong;Kim, Jong-Chul;Choi, Byung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.269-276
    • /
    • 2006
  • This paper represents development of quartz crystal microbalance (QCM) and usage as a dew point sensor. The temperature of a quartz resonator was controlled precisely from $20^{\circ}C$ to $-30^{\circ}C$ with the ramping rate of $0.1^{\circ}C/s$ by using a custom-made crystal holder housing the quartz resonator associated with a thermoelectric cooler (Peltier cooler), which results in the working range from $15.2^{\circ}C$ to $-24.0^{\circ}C$ based on an accurate holder temperature compensation and temperature effect compensation process. The developed QCM dew point sensor and analysis techniques show very good sensing characteristics at measurement of moist air with the relative humidity from 10 %R.H. to 90 %R.H. generated by a divided-type humidity generator and the dew point temperatures were determined with an accuracy of less than ${\pm}0.18^{\circ}C$, which also showed good agreement with reference values in their error range.

Polymorphic Phase Transition and Temperature Coefficient of Capacitance of Alkaline Niobate Based Ceramics

  • Bae, Seon-Gi;Shin, Hyea-Gyiung;Sohn, Eun-Young;Im, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.78-81
    • /
    • 2013
  • $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ (hereafter, No excess NKN) ceramics and $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ with excess $(Na_{0.5}K_{0.5})NbO_3$ (hereafter, Excess NKN) were fabricated by the conventional solid state sintering method, and their phase transition properties and dielectric properties were investigated. The crystalline structure of No excess NKN ceramics and Excess NKN ceramics were shown characteristics of polymorphic phase transition (hereafter, PPT), especially shift from the orthorhombic to tetragonal phase by increasing sintering temperature range from $1,100^{\circ}C$ to $1,200^{\circ}C$. Also, the temperature coefficient of capacitance (hereafter, TCC) of No excess NKN ceramics and Excess NKN ceramics from $-40^{\circ}C$ to $100^{\circ}C$ was measured to evaluate temperature stability for applications in cold regions. The TCC of No excess NKN and Excess NKN ceramics showed positive TCC characteristics at a temperature range from $-40^{\circ}C$ to $100^{\circ}C$. Especially, Excess NKN showed a smaller TCC gradient than those of Excess NKN ceramics in range from $-40^{\circ}C$ to $100^{\circ}C$. Therefore, NKN piezoelectric ceramics combined with temperature compensated capacitor having negative temperature characteristics is desired for usage in cold regions.

Experimental Investigation for the Characteristics of Energy-Usage of Heating Systems in Apartment Complex Part I: Experiment System Implementation (난방방식별 에너지사용 특성 실증 분석 I: 실증 시스템 구축)

  • Im, Yong-Hoon;Choi, Kyu-Sung;Kim, Hyouck-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.480-487
    • /
    • 2007
  • The experimental implementation for different heating systems, district heating and separate heating and power, is discussed in the analysis of the characteristics of energy-usage in apartment complex. Total 20 families are chosen for the experiment, 10 for the district heating and the others for separate heating and power. Among the 10 families, the operating temperature was forced to be controled within certain range of temperatures for 5 ones, and it was left as usual for the other ones. The configuration and general features of each facilities and data acquisition systems are mentioned in brief and the technical specifications for it are also described. The analysis for the experiment results of this investigation is going to be carried out and published in a subsequent paper.

  • PDF

A Study of the Relations between the Bacterial Concentration and the Environmental Factors in the Factories using Water Soluble Metal Working Fluids (수용성 금속가공유 취급사업장에서 세균농도와 환경인자의 관계에 대한 연구)

  • Park, Hae Dong;Park, Hyunhee;Kim, Jung Hyun;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.284-292
    • /
    • 2012
  • Objectives: The objective of this study was to investigate the relations between the bacterial concentration and the environmental factors in the water soluble metal working fluids at factories. Methods: The bacterial concentrations for airborne and fluid samples of 7 factories were quantified during the summer season. And we statistically analysed the relations between the bacterial concentrations and the factors such as temperature, relative humidity, usage quantity, mixing ratio and exchange interval. Results: The geometric mean levels of the airborne bacterial concentrations were 79.1(range : N.D.~686) $CFU/m^{3}$ and 68.1(range: N.D.~919) $CFU/m^{3}$ in the process and outdoor. The airborne bacterial concentrations showed no statistical difference by process, usage quantity, mixing ratio and exchange interval. The airborne bacterial concentrations had negatively weak correlations with air temperature and relative air humidity(p<0.05). The bacterial concentrations and pH showed significantly negative correlations in the fluids(p<0.05). And the airborne bacterial concentrations in factories and those in metal working fluids showed no statistical relationship. Conclusions: In the water soluble metal working fluids using factories, the airborne bacterial concentrations of the process were related to those of the outdoor and environmental factors, rather than the onsite contaminated metal working fluids.

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

Study on the forming Limit Diagram of Steel Sheets for the Oil Pan of Automobile at the Warm Forming Condition (오일팬용 재료의 온간 성형한계도에 관한 연구)

  • 이항수;오영근;최치수
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.670-680
    • /
    • 2000
  • The purpose of this study is to provide the database of forming limit diagram applicable to the warm forming of oil pan. The test materials are SCP1 and SCP3C with the thickness of 1.4mm which is used for the oil pan of automobile. The testing temperature is 5$^{\circ}C$~15$0^{\circ}C$ which is In the range of practical usage. The results are the forming limit diagram limiting dome height and the maximum punch load at each temperature such as 5$^{\circ}C$, $25^{\circ}C$, 6$0^{\circ}C$, 9$0^{\circ}C$, 12$0^{\circ}C$ and 15$0^{\circ}C$. From these results, we can see that the forming limit curves are translated depending upon the temperature and that FLC at low temperature is higher than at high temperature. Both of limiting dome height and maximum punch load also decrease as the temperature increases. Present results can be useful for die trial and forming analysis as a tool of evaluating the forming severity for the sheet metal forming processes at the warm working condition by comparing the practical strains with FLC.

  • PDF

A Study on the Improvements of Idle Performance for a SI Engine with a Syngas Assist (합성가스를 이용한 SI엔진의 아이들 성능 개선에 관한 연구)

  • Kim, Chang-Gi;Song, Chun-Sub;Cho, Young-Seok;Kang, Kern-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2006
  • In this study, syngas which is reformed from fossil fuel and has hydrogen as a major component, was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction of the total supplied fuel varied to 0 %, 25 %, 50 % with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions. It is supposed that the usage of syngas in the internal combustion engine is an effective solution to meet the future strict emission regulations.

  • PDF