• Title/Summary/Keyword: Uric acid (UA)

Search Result 28, Processing Time 0.022 seconds

Preoperative Levels of Uric Acid and Its Association to Some Perioperative Parameters in the Patients with Unstable Angina or Myocardial Infarction

  • Kang, Chan-Sik;Seok, Seong-Ja;Choi, Hwa-Sik;Kim, Dae-Sik;Choi, Seok-Cheol;Moon, Seong-Min
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.113-122
    • /
    • 2011
  • Several studies have reported a relation between serum levels of uric acid and a wide variety of cardiovascular conditions. But, the relationship between serum levels of uric acid and coronary artery disease (CAD) is still controversial. The present study was retrospectively designed to investigate whether CAD can be stratified by the level of uric acid and there are the relationships between preoperative levels of uric acid and perioperative biochemical markers in fifty-adult patients that underwent coronary artery bypass grafting surgery (CABG) and twenty-normal subjects. They were divided into the control, the unstable angina (UA-group) and the myocardial infarction group (MI-group). In preoperative levels of uric acid, the MI-group was higher than control and the UA-group. The MI-group had significantly higher correlations than the UA-group between preoperative levels of uric acid and left ventricular ejection fraction, cardiac markers (creatine kinase, lactate dehydrogenase and brain natriuretic peptide), renal markers (blood urea nitrogen and creatinine) or total leukocyte levels. At postoperative periods, the MI-group had higher relationships of uric acid with aspartate aminotransferase, blood urea nitrogen or creatinine levels. Although there was not statistically significant, the UA-group tended to have higher correlation coefficients than the MI-group between preoperative levels of uric acid and intensive care unit-stay (ICU), or postoperative mechanical ventilation time. These results reflect that increased levels of serum uric acid may be a tool for the diagnosis of coronary heart disease and may be considered as a good predictor in assessing the cardiac and renal functions in patients with myocardial infarction or unstable angina at the preoperative period. However, further studies should be performed in a large patient population.

Investigation on the Stability of Uric Acid and its Isotope (1,3-15N2) in Ammonium Hydroxide for the Absolute Quantification of Uric Acid in Human Serum

  • Lee, Sun Young;Kim, Kwonseong;Oh, Han Bin;Hong, Jongki;Kang, Dukjin
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • In clinical diagnosis, it's well known that the abnormal level of uric acid (UA) in human body is implicated in diverse human diseases, for instance, chronic heart failure, gouty arthritis, diabetes, and so on. As a primary method, an isotope dilution mass spectrometry (IDMS) has been used to obtain the accurate quantity of UA in blood or serum and also develop the certificated reference material (CRM) so as to provide a SI-traceability to clinical laboratories. Due to the low solubility of UA in water, an ammonium hydroxide ($NH_4OH$) has been considered as a promising solvent to increase the solubility of UA that enables the preparation of both UA and its isotope standard solution for next IDMS-based absolute quantification. But, because of using this $NH_4OH$ solvent, it gives rise to the unwanted degradation of UA. In this study, we sought to optimize condition for the stability of UA in $NH_4OH$ solution by varying the mole ratios of UA to $NH_4OH$, followed by ID-LC-MRM analysis. In addition, we also inspected minutely the effect of the storage temperatures. Additionally, we also performed the quantitative analysis of UA in the KRISS serum certificated reference material (CRM, 111-01-02A) with diverse mixing ratios of UA to $NH_4OH$ and then compared those values to its certification value. Based on our experiments, adjusting the mole ratio of 1/2 ($UA/NH_4OH$) with the storage temperature of $-20^{\circ}C$ is an effective way to secure both the solubility and stability of UA in $NH_4OH$ solution for next IDMS-based quantification of UA in serum.

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh;Bonyadi, Sepideh
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

Relationship between Albuminuria and Uric Acid to High-Density Lipoprotein Cholesterol Ratio in Korean Adults (대한민국 성인에서 알부민뇨와 요산 대 고밀도 지단백 콜레스테롤 비율의 관련성)

  • Hyun YOON
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.167-173
    • /
    • 2023
  • This study assesses the urine microalbumin to urine creatinine ratio (uACR) with uric acid and the association with the high-density lipoprotein cholesterol (UA/HDL-C) ratio in Korean adults. Data from the 2019 Korean National Health and Nutrition Examination Survey was procured and included 5,845 adults aged 20 years or older. Several key findings were obtained in the present study. After adjusting for the related variables (age, gender, hypertension, obesity, type 2 diabetes mellitus, and chronic kidney disease), the uACR was found to be positively associated with the quartiles of the UA/HDL-C ratio (P=0.002). Moreover, after adjusting for related variables, the odds ratio (OR) of albuminuria (uACR≥30.0 mg/g) was not significant in quartile 2 (Q2) (OR, 1.015; 95% confidence interval [CI], 0.757~1.361) and Q3 (OR, 1.090; 95% CI, 0.811~1.465) but was significantly higher in Q4 (OR, 1.416; 95% CI, 1.044~1.921) as compared to Q1 of the UA/HDL-C ratio. We conclude that since the UA/HDL-C ratio is positively associated with albuminuria in Korean adults, an increased UA/HDL-C ratio could be applied as a useful measure to assess albuminuria in Korean adults.

Association between Risk Factors of Metabolic Syndrome, Serum Uric Acid, and Urine pH in University Students (대학생의 대사증후군 위험요인과 혈청 요산 및 소변 내 산도와의 관련성)

  • Lee, Jinhwa;Park, Hyunju
    • Journal of Korean Biological Nursing Science
    • /
    • v.15 no.4
    • /
    • pp.237-246
    • /
    • 2013
  • Purpose: A few Korean studies have reported that low urine acidity and hyperuricemia are related to metabolic syndrome. Therefore, we evaluated the relationships between urine pH, serum Uric Acid (UA), and metabolic risk factors in university students. Methods: Data were obtained from student health examinations in one university. Participants were 3,412 male and 4,214 female students. Descriptive statistics, t-test, logistic regressions and multiple logistic regression using SPSS version 18.0 were performed. Results: No significant relationship was found between metabolic risk factors and urine pH. From the univariate analysis, serum UA was significantly higher in obese ($BMI{\geq}25$), elevated blood pressure ($SBP{\geq}130$ and $DBP{\geq}85$), and higher triglyceride (${\geq}150$) groups for males and in obese, higher triglyceride and fasting blood sugar (${\geq}100$), and lower HDL-cholesterol (<50) groups for females. From the results of multivariate analysis, age, BMI, and triglyceride were significantly related to serum UA in males, BMI and HDL-cholesterol were significantly related to serum UA in females. Conclusion: Although there was no significant relationship between urinary pH and metabolic risk factors, significant associations between some of the metabolic risk factors and serum UA were found in the young adult population. Further studies are required to know the exact pathway between serum UA and metabolic syndrome.

A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

  • Yu, Joonhee;Kim, Tae Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.274-281
    • /
    • 2017
  • This paper describes the simple fabrication of an electrode modified with electrochemically reduced graphene oxide (ERGO) for the simultaneous electrocatalytic detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). ERGO was formed on a glassy carbon (GC) electrode by the reduction of graphene oxide (GO) using linear sweep voltammetry. The ERGO/GC electrode was formed by subjecting a GO solution ($1mg\;mL^{-1}$ in 0.25 M NaCl) to a linear scan from 0 V to -1.4 V at a scan rate of $20mVs^{-1}$. The ERGO/GC electrode was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical performance of the ERGO/GC electrode with respect to the detection of DA, AA, and UA in 0.1 M PBS (pH 7.4) was investigated by differential pulse voltammetry (DPV) and amperometry. The ERGO/GC electrode exhibited three well-separated voltammetric peaks and increased oxidation currents during the DPV measurements, thus allowing for the simultaneous and individual detection of DA, AA, and UA. The detection limits for DA, AA, and UA were found to be 0.46, 77, and $0.31{\mu}M$ respectively, using the amperometric i-t curve technique, with the S/N ratio being 3.

Serum Uric Acid Level and the Incidence of Metabolic Syndrome in Middle-aged Korean Men: A 5-Year Follow-up Study

  • Lee, Jong-Keun;Ryoo, Jae-Hong;Choi, Joong-Myung;Park, Sung Keun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.6
    • /
    • pp.317-326
    • /
    • 2014
  • Objectives: Elevated serum uric acid (UA) has been known to be associated with the prevalence of metabolic syndrome (MetS). However, no prospective studies have examined whether serum UA levels are actually associated with the development of MetS. We performed a prospective study to evaluate the longitudinal effects of baseline serum UA levels on the development of MetS. Methods: A MetS-free cohort of 14 906 healthy Korean men, who participated in a medical check-up program in 2005, was followed until 2010. MetS was defined according to the Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention. Cox proportional hazards models were performed. Results: During 52 466.1 person-years of follow-up, 2428 incident cases of MetS developed between 2006 and 2010. After adjusting for multiple covariates, the hazard ratios (95% confidence intervals) for incident MetS for the second, the third, and the fourth quartile to the first quartile of serum UA levels were 1.09 (0.92-1.29), 1.22 (1.04-1.44), and 1.48 (1.26-1.73), respectively (p for trend <0.001). These associations were also significant in the clinically relevant subgroup analyses. Conclusions: Elevated serum UA levels were independently associated with future development of MetS in Korean men during the 5-year follow-up period.

Modified Glassy Carbon Electrode with Silver Nanoparticles/Polyaniline/Reduced Graphene Oxide Nanocomposite for the Simultaneous Determination of Biocompounds in Biological Fluids

  • Ghanbari, Kh.;Moloudi, M.;Bonyadi, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.361-372
    • /
    • 2019
  • The silver nanoparticles/polyaniline/reduced graphene oxide nanocomposite modified glassy carbon electrode (Ag/PANI/RGO/GCE) was prepared by the electrochemical method. The Ag/PANI/RGO nanocomposite was characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray diffraction (XRD), and electrochemical impedance spectroscopy (ESI). Two electrochemical techniques namely differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were used to the electrochemical behaviors investigation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The Ag/PANI/RGO/GCE exhibited remarkable electrocatalytic activity towards the oxidation reaction of AA, DA, and UA in Britton-Robinson (BR) solution (pH=4.0). Under the optimal conditions, the determinations of AA, DA, and UA were accomplished using DPV. AA-DA and DA-UA peak potential separations were 130 and 180 mV, respectively. For simultaneous detection, the linear response ranges were in the two concentration ranges of 0.05-0.8 mM and 2.0-16.0 mM with detection limit 0.412 μM (S/N = 3) for AA, 0.7-90.0 μM and 90.0-1000.0 μM with detection limit 0.023 μM (S/N = 3) for DA, and 0.8-70.0 μM and 70.0-1000.0 μM with detection limit 0.050 μM (S/N = 3) for UA. This modified electrode showed good sensitivity, selectivity, and stability with applied to determine AA, DA, and UA in human urine and drug.

Prevention of Hyperuricemia by Clerodendrum trichotomum Leaf Extract in Potassium Oxonate-Induced Mice

  • Jang, Mi Gyeong;Song, Hana;Kim, Ji Hye;Oh, Jung Min;Park, Jung Young;Ko, Hee Chul;Hur, Sung-Pyo;Kim, Se-Jae
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.89-100
    • /
    • 2020
  • Clerodendrum trichotomum is a folk medicine exhibiting anti-hypertension, anti-arthritis, and anti-rheumatism properties. However, little is known about whether the material might prevent hyperuricemia and associated inflammation. In this study, we explored whether C. trichotomum leaf extract (CTE) prevented hyperuricemia induced by potassium oxonate (PO) in mice. CTE (400 mg/kg body weight) significantly reduced the serum uric acid (UA), blood urea nitrogen (BUN), and serum creatinine levels and increased urine UA and creatinine levels. CTE ameliorated PO-induced inflammation and apoptosis by reducing the levels of relevant proteins in kidney tissues. Also, CTE ameliorated both UA-induced inflammatory response in RAW 263.7 cells and UA-induced cytotoxicity in HK-2 cells. In addition, liver transcriptome analysis showed that CTE enriched mainly the genes for mediating positive regulation of MAPK cascade and apoptotic signaling pathways. Together, the results show that CTE effectively prevents hyperuricemia and associated inflammation in PO-induced mice.

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.