DOI QR코드

DOI QR Code

Modified Glassy Carbon Electrode with Silver Nanoparticles/Polyaniline/Reduced Graphene Oxide Nanocomposite for the Simultaneous Determination of Biocompounds in Biological Fluids

  • Ghanbari, Kh. (Department of Chemistry, Faculty of physics and chemistry, Alzahra University) ;
  • Moloudi, M. (Department of Chemistry, Faculty of physics and chemistry, Alzahra University) ;
  • Bonyadi, S. (Department of Chemistry, Faculty of physics and chemistry, Alzahra University)
  • Received : 2019.04.05
  • Accepted : 2019.05.29
  • Published : 2019.12.31

Abstract

The silver nanoparticles/polyaniline/reduced graphene oxide nanocomposite modified glassy carbon electrode (Ag/PANI/RGO/GCE) was prepared by the electrochemical method. The Ag/PANI/RGO nanocomposite was characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray diffraction (XRD), and electrochemical impedance spectroscopy (ESI). Two electrochemical techniques namely differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were used to the electrochemical behaviors investigation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The Ag/PANI/RGO/GCE exhibited remarkable electrocatalytic activity towards the oxidation reaction of AA, DA, and UA in Britton-Robinson (BR) solution (pH=4.0). Under the optimal conditions, the determinations of AA, DA, and UA were accomplished using DPV. AA-DA and DA-UA peak potential separations were 130 and 180 mV, respectively. For simultaneous detection, the linear response ranges were in the two concentration ranges of 0.05-0.8 mM and 2.0-16.0 mM with detection limit 0.412 μM (S/N = 3) for AA, 0.7-90.0 μM and 90.0-1000.0 μM with detection limit 0.023 μM (S/N = 3) for DA, and 0.8-70.0 μM and 70.0-1000.0 μM with detection limit 0.050 μM (S/N = 3) for UA. This modified electrode showed good sensitivity, selectivity, and stability with applied to determine AA, DA, and UA in human urine and drug.

Keywords

References

  1. M. A. Kumar, V. Lakshminarayanan, S. S. Ramamurthy, C. R. Chimie, 2019, 22(1), 58-72. https://doi.org/10.1016/j.crci.2018.09.015
  2. M.D. Tezerjani, A. Benvidi, A. Dehghani Firouzabadi, M. Mazloum-Ardakani, A. Akbari, Measurement, 2017, 101, 183-189. https://doi.org/10.1016/j.measurement.2017.01.029
  3. L. Yang, D. Liu, J. Huang, T. You, Sens. Actuators B, 2014, 193, 166-172. https://doi.org/10.1016/j.snb.2013.11.104
  4. R. M. Wightman, L. J. May, A. C. Michael, Anal. Chem., 1988, 60(13), 769A-793A. https://doi.org/10.1021/ac00164a718
  5. S. Immanuel, T.K. Aparna, R.Sivasubramanian, Surf. Interfaces, 2019, 14, 82-91. https://doi.org/10.1016/j.surfin.2018.11.010
  6. M.D. Rubianes, G.A. Rivas, Anal. Chim. Acta, 2001, 440(2), 99-108. https://doi.org/10.1016/S0003-2670(01)01059-5
  7. A. Domenech, H. Garca, M.T. Domenech-Carbo, M.S. Galletero, Anal. Chem., 2002, 74(3), 562-569. https://doi.org/10.1021/ac010657i
  8. W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, C. Rev, Solid State Mater. Sci., 2010, 35(1), 52-71.
  9. A Z. Miao, P. Wang, A. Zhong, M. Yang, Q. Xu, S. Hao, X. Hu, J. Electranal. Chem., 2015, 756, 153-160. https://doi.org/10.1016/j.jelechem.2015.08.025
  10. J. N. Chazalviel and P. Allongue, J. Am. Chem. Soc., 2010, 133(4), 762-764. https://doi.org/10.1021/ja109295x
  11. P. Paulraj, N. Janaki, S. Sandhya, K. Pandian, Colloids Surf. A, 2011, 377(1-3), 28-34. https://doi.org/10.1016/j.colsurfa.2010.12.001
  12. Y. He, S. Su, T. T. Xu, Y. L. Zhong, J. A. Zapien, J. Li, C. H. Fan and S. T. Lee, Nano Today, 2011, 6(2), 122-130. https://doi.org/10.1016/j.nantod.2011.02.004
  13. M. Wang, M. Cui, W. Liu, X. Liu, J. Electranal. Chem., 2019, 832, 174-181. https://doi.org/10.1016/j.jelechem.2018.10.057
  14. Kh. Ghanbari, N. Hajheidari, Anal. Biochem., 2015, 473, 53-62. https://doi.org/10.1016/j.ab.2014.12.013
  15. L. Yang, D. Liu, J. Hung, T. You, Sens. Actuators B, 2014, 193, 166-172. https://doi.org/10.1016/j.snb.2013.11.104
  16. Kh. Ghanbari, S. Bonyadi, New J. Chem., 2018, 42(11), 8512-8523. https://doi.org/10.1039/C8NJ00857D
  17. Kh. Ghanbari, Synth. Met., 2014, 195, 234-240. https://doi.org/10.1016/j.synthmet.2014.06.014
  18. I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, Nat. Commun., 2010, 1, 73-79. https://doi.org/10.1038/ncomms1067
  19. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon, 2010, 48(2), 487-493. https://doi.org/10.1016/j.carbon.2009.09.066
  20. C. Chen, L. Wang, G. Jiang, J. Zhou, X. Chen, H. Yu, Nanotechnology, 2006, 17(15), 3933-3938. https://doi.org/10.1088/0957-4484/17/15/054
  21. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruo, Nature, 2006, 442(7100), 282-286. https://doi.org/10.1038/nature04969
  22. S. Thiagarajan, S-M. Chen, Talanta, 2007, 74(2), 212-222. https://doi.org/10.1016/j.talanta.2007.05.049
  23. Y. Bao, J. Song, Y. Mao, D. Han, F. Yang, L. Niu, A. Ivaska, Electroanalysis, 2011, 23(4), 878-884. https://doi.org/10.1002/elan.201000607
  24. C. Wang, J. Du, H. Wang, C. Zou, F. Jang, P. Yang, Y. Du, Sens. Actuators B, 2014, 204, 302-309. https://doi.org/10.1016/j.snb.2014.07.077
  25. X. Niu, W. Yang, H. Guo, J. Ren, F. Yang, J. Gao, Talanta, 2012, 99, 984-988. https://doi.org/10.1016/j.talanta.2012.07.077
  26. H. Yang, J. Zhao, M. Qiu, P. Sun, D. Han, L. Niu, G. Cui, Biosens. Bioelectron., 2019, 124-125, 191-198. https://doi.org/10.1016/j.bios.2018.10.012
  27. C. Zou, J. Zhong, S. Li, H. Wang, J. Wang, B. Yan, Y. Du, J. Electranal. Chem., 2017, 805, 110-119. https://doi.org/10.1016/j.jelechem.2017.10.020
  28. B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava, Colloids Surf. B, 2013, 111, 97-106. https://doi.org/10.1016/j.colsurfb.2013.05.023

Cited by

  1. Facile preparation of patterned silver electrodes with high conductivity, flatness and adjustable work function by laser direct writing followed by transfer process vol.530, 2019, https://doi.org/10.1016/j.apsusc.2020.147237