• Title/Summary/Keyword: Urea resin

Search Result 166, Processing Time 0.026 seconds

Manufacturing of High Water-Resistant Particleboard by Combining Use of Urea Resin and EMDI Resin (요소수지와 EMDI수지의 복합이용에 의한 고내수정 파티클보드의 제조)

  • Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.97-105
    • /
    • 1998
  • This study examined the combined using effects of urea-formaldehyde (UF) resin and emulsifiable methylene diphyenyl diisocyanate (EMDI) resin to overcome performance limit of three-layer particleboards commonly made by UF resin. Two adhesive adding methods were applied with three types of resin combination system to each layer of particleboards. The one was simultaneously spreading method with emulsified compound resin (UF and EMDI) while the other was separately spreading method with unemulsified EMDI resin after UF resin spreading. The performance of particleboards bonded with 2% EMDI resin to the inner layers(IL) were similar to that of controls bonded with 8% UF resin. In the case of the emulsified compound resin application to the all layers of particleboards, there were marked reinforcing effects of EMDI resin, although a small amount of EMDI resin was mixed with UF resin. Especially bending MOR after 24 hours cold water-immersion and thickness swelling after 2 hours hot water-immersion of compound resin-bonded particleboards were remarkably different from those of pure UF resin-bonded particleboards. It was found that separately spreading method with unemulsified EMDI resin was more effective than simultaneously spreading method with emulsified compound resin to sustain the internal bond strength of particleboards after 24 hours cold water-immersion. In the resin combination systems to outer layers/inner layers of particleboards, water resistance and strength properties were superior in order of UF+EMDI/UF+EMDI > UF/UF+EMDI > UF/UF. And water resistance of particleboards was greatly dependent upon EMDI resin level in any adhesive adding method.

  • PDF

Measurement of Molecular Weights of Melamine-Urea-Formaldehyde Resins and Their Influences to Properties of Medium Density Fiberboards

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.913-922
    • /
    • 2016
  • This study attempted to measure molecular weight (MW) of melamine-urea-formaldehyde (MUF) resins prepared by two different synthesis methods: the one-step MUF resins were synthesized in one batch procedure, while the two-step MUF resins were prepared by a physical mixing of urea-formaldehyde (UF) resin with melamine-formaldehyde (MF) resin that had been synthesized in a separate procedure. The properties of medium density fiberboard (MDF) panels bonded with two types of MUF resins were also investigated. MWs of these MUF resins were measured using gel permeation chromatography (GPC). In addition, this study measured the MWs of one-step MUF resin during its synthesis procedure. The performance of two types of MUF resins was evaluated by determining properties of MDF panels prepared in laboratory. As the synthesis procedure progressed, both number average MW ($M_n$) and weight average MW ($M_w$) of one-step MUF resin gradually increased, while the polydispersity index (PDI) decreased. And low Mw species of the resin predominantly decreased as the synthesis step progressed. The one-step MUF resin showed greater $M_n$ and $M_w$ than those of the two-step ones even though the PDI values of both resins were very similar each other. As expected, the one-step MUF resin resulted in better properties of MDF panels than those of two-step resins. In particular, the one-step MUF resin provided better internal bond (IB) strength and thickness swelling (TS) with MDF panels than those of two-step ones, indicating better water resistance of the one-step resin. These results suggest that the preparation method of MUF resins have a great impact on the MW and final panel properties.

Effect of Synthesis Method and Melamine Content of Melamine-Urea-Formaldehyde Resins on Bond-Line Features in Plywood

  • LUBIS, Muhammad Adly Rahandi;JEONG, Bora;PARK, Byung-Dae;LEE, Sang-Min;KANG, Eun-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.579-586
    • /
    • 2019
  • This work examined effects of the synthesis method and melamine content of melamine-urea-formaldehyde (MUF) resins on the bond-line features (i.e. resin penetration and bond-line thickness) in plywood. Two synthesis methods (MUF-A and MUF-B) and three melamine contents (5, 10, and 20%) were employed to prepare MUF resins. The MUF-A resins at three melamine contents were prepared by a simultaneous reaction of melamine, urea, and formaldehyde, while the MFU-B resins were prepared by reacting melamine at the same levels with formaldehyde followed by urea. The results showed that higher melamine content increased the viscosity of MUF-A and MUF-B resins. The resin penetration of MUF-A resins decreased by 48% while those of MUF-B resins increased by 16% at 20% melamine content. As a result, the MUF-A resins had greater bond-line thickness than those of MUF-B resins as the melamine content increased. The MUF-B resins resulted in thinner bond-line and greater resin penetration compared to those of MUF-A resins. The results suggested that MUF-B resins prepared with 20% melamine content had a proper combination of resin penetration and bond-line thickness that could produce plywood panel with a better adhesion performance.

Curing Behavior and Adhesion Performance of Urea-Melamine-Formaldehyde (UMF) Resin by Staged Addition of Melamine (멜라민 첨가 순서에 따른 UMF 접착제의 경화거동과 접착력의 영향)

  • Xu, Guang-Zhu;Eom, Young-Geun;Lee, Young-Kyu;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The objective of this research was to investigate the curing behavior and adhesion performance of urea-melamine-formaldehyde (UMF) resin for the four types of UMF-1, UMF-2, UMF-3, and UMF-4 which synthesized by the staged addition of melamine. Also, various network structures of these resin types were discussed based on their different curing behavior and adhesion performance. The curing behavior was evaluated by DMTA and thermal stability was checked by TGA. Adhesion performance was evaluated by dry and wet shear strengths and the pH value of each cured resin was checked to see its effect on the adhesion performance. The results indicated that the UMF-1 resin type by the addition of melamine initially with the urea and formaldehyde at the same F/(U+M) rate showed the lowest thermal stability, rigidity (${\Delta}E^{\prime}$), temperature of tan ${\delta}$ maximum ($T_{tan}\;_{\delta}$), and wet shear strength, and pH value of cured resin. In wet shear strength, however, the UMF-4 resin type appears to be slightly higher than UMF-1 resin type.

  • PDF

Curing Characteristics of Low Molar Ratio Urea-Formaldehyde Resins

  • Fan, Dongbin;Li, Jianzhang;Mao, An
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.45-52
    • /
    • 2006
  • Five low molar ratio urea-formaldehyde (LUF) resins were synthesized in this study. The effects of molar ratio, free formaldehyde content, and catalysts on the curing characteristics of LUF resins were studied by measuring its free formaldehyde content, pH value change after catalysts added, curing rate, and pot life, observing its cured appearance, and analyzing its thermal behavior. The results indicate that: 1) The LUF resin with lower molar ratio than 1.0 can still cure; 2) Free formaldehyde content is not the main factor in affecting curing rate of LUF resin; 3) Compared with ammonium chloride as a traditional catalyst, persulfate salts markedly accelerate the curing rate of LUF resin, and result in the different appearance; 4) the addition of sodium chloride to catalysts can accelerate the curing rate of LUF resin, but the effect is moderate.

  • PDF

Evaluation of Com-Ply from Domestic Logs and Urea-Formaldehyde Resin Adhesive (국산재와 요소수지접착제로 제조된 Com-Ply의 평가)

  • Oh, Yong-Sung;Kim, Jong-In
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.54-57
    • /
    • 2007
  • Urea-formaldehyde (UF) resin was formulated similarly to plywood resin in the laboratory. The synthesized UF resin adhesive was mixed with extender, filler and acid catalyst. The mixture contained 56.1% total solids and 43.9% water. The mixes was used to bond five Com-Ply types using Korean wood species. The Com-Ply made were tested for shear strength and wood failure according to KS F 3101 ordinary plywood as well as for bending strength per KS F 3104 particleboard. The performance test results showed good strength properties for all Com-Ply types made in this study. This result represented that the UF resin adhesive mix was adequate for bonding Com-Ply with domestic wood species.

Properties of Particleboard Made from Pinus densiflora Thinning Log with Extended Urea-Formaldehyde Resin Adhesive (증량된 요소수지 접착제와 소나무 간벌재로 제조된 파티클보드의 성질)

  • Oh, Yong-Sung;Kwak, Jun-Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.22-26
    • /
    • 2003
  • Particleboards (PBs) were made from Pinus densiflora thinning particle with urea-formaldehyde (UF) resin added casein and soybean as extender. The performance test results of the PB made showed that Pinus densiflora thinning log was suitable raw material for PB. As the extender addition in the UF resin was increased, the mechanical performance of the PB, bonded with the extended UF resin, were significantly decreased. However, casein and soybean can be used up to 15% and 20% of the UF resin solids respectively.

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Mechanical Properties of Rice Husk Flour-Wood Particleboard by Urea-Formaldehyde Resin

  • Lee, Young-Kyu;Kim, Sumin;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.42-49
    • /
    • 2003
  • The objective of this research was to investigate the possibility of using rice husk flour as a partial substitute for the wood particles used as the raw material for manufacturing particleboards, by examining the physical and mechanical properties of the rice husk flour-wood particleboard as a function of the type of urea-formaldehyde resin used. Commercial wood particles and two types of rice husk flours (A type (30 ㎛), B type (300 ㎛)) were used. E1 and E2 class urea-formaldehyde resin was used as the composite binder, combined with 10 wt.% NH4Cl solution as a hardener. Rice husk flour-wood particleboards with dimensions of 27×27×0.7 (cm) were manufactured at a specific gravity of 0.7 with rice husk flour contents of 0, 5, 10, and 15 (wt.%). We examined the physical properties (specific gravity and moisture content), mechanical properties (three point bending strength and internal bonding) of the composite. In general, it can be concluded that composites made from rice husk flours are of somewhat poorer quality than those made from wood; however, blending in small amounts of rice husk flour (e.g., 5% to 10% by weight) may have no significant impact on quality.

Control of Free Formaldehyde Release from Resin Finished Fabric.( I ) -Effect of Aftertreatment with Urea- (수지가공포의 유리 Formaldehyde 발생억제( I ) -요소에 의한 후처리효과-)

  • Lee Jung Heui;Lee Soon Won;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.3 no.2
    • /
    • pp.29-36
    • /
    • 1979
  • In order to control free formaldehyde release from fabric finished with urea-formaldehyde precondensate, the resin finished fabric was padded in urea or acylamide solution, dried and cured at $140^{\circ}C$. The effect of aftertreatment with urea or acrylamide on free formaldehyde release and on characteristics of resin finished fabric were examined. It was shown that aftertreatment with urea was effective to control free formaldehyde release, the free formaldelyde content in aftertreated fabric could be reduced from 900 ppm to 200 ppm and formaldehyde release under accelerated storage condition was also reduced from 8000 ppm to 1000 ppm. Polyacrylamide formed in the fiber during aftertreatment appeared to be a formaldehyde capture. Especially by washing the aftertreated fabric, the ability to control formaldehyde release under accelerated condition was not dimimished in contrast with aftertreated with unea. It suggests that polyacrylamide can be used as a formaldehyde capture which withstand diminution from washing.

  • PDF