• Title/Summary/Keyword: Urea resin

Search Result 166, Processing Time 0.02 seconds

Mechanical and Physical Properties of Roof Tile Prepared from Sugar Cane Fiber

  • Wong on, Jessada;Surin, Prayoon;Apawet, Chaiyaprek;Eidhed, Krittee;montra, Sunate;Aumkongthum, Kaichai;Thumsorn, Supaphorn
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.86-89
    • /
    • 2015
  • Sugar cane, renewable fiber resources, were used for roof tile production. Urea formaldehyde, phenol formaldehyde and isocyanate resin were used as binders in this study. Roof tile specimens with 400 mm wide, 400 mm long and 5 mm thick were prepared by compression molding. Physical and mechanical properties of the specimens were analyzed by water absorption, thickness swelling, thermal conductivity, density, modulus of rupture and modulus of elasticity. From the results, water absorption at 1 and 24 hours was 19-47 % and 38-57 %, respectively. Thickness swell at 24 hours was 15-29%. Thermal conductivity was 0.016, 0.017 and 0.019 W/m.K when using isocyanate, urea formaldehyde and phenol formaldehyde, respectively. Density of the specimens was 770-860 kg/m3. Modulus of rapture was 255-280 MPa. Modulus of elasticity was 5.1-7.6 GPa. Physical and mechanical properties of the specimens indicated that they would be applied for roof tile and construction.

Characteristics of Medical Polymer Based on Epoxy Resin System -Cure Characteristics for DGEBA/MDA/PGE- DMU System by Kissinger and Ozawa Equations- (에폭시 수지계 의료용 고분자 재료의 특성 연구 - Kissinger 식과 Ozawa 식에 의한 DGEBA/MDA/PGE-DMU 계의 경화특성 -)

  • Kim, Jang-Hoon;Lee, Jae-Young;Kim, Sang-Wook;Sim, Mi-Ja
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.727-732
    • /
    • 2001
  • The cure kinetics of diglycidyl ether of bisphenol A (DGEBA)/4,4'- methylene dianiline (MDA) system with synthesized phenyl glycidyl ether-dimethylurea (PGE-DMU) was studied by Kissinger and Ozawa equations with DSC analysis in the temperature range of $20~300^{\circ}C$ To investigate the reaction mechanism between epoxy group of PGE and urea group of DMU, FT-lR spectroscopy analysis was used. The epoxide group of PGE reacted with the urea group of DMU and formed a hydroxyl group which acted as a catalyst on the cure reaction of other epoxide and amine groups. The activation energy of DGEBA/MDA system without PGE-DMU was 46.5 kJ/mol and those of the system with 5 and 10 phr of PGE- DMU were 43.4 and 37.0 kJ/mol, respectively. Ozawa method also showed the same tendency.

  • PDF

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Studies on the Extending of Plywood Adhesives used Foliage Powder (낙엽분말(落葉粉末)을 이용(利用)한 합판용(合板用) 접착제(接着劑)의 증량(增量)에 관(關)한 연구(硏究))

  • Kim, Jong-Man;Bark, Jong-Yeol;Lee, Phil-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.83-100
    • /
    • 1979
  • It was planned and performed to study the possibility on the use of inexpensive and easily acquirable foliage powder, which processed by pulverizing after dried, instead of imported expensive wheat flour for the extending of plywood adhesives. Pine leaves of softwood trees, Poplar, Oak and Sycamore leaves of broad leaved species were selected and harvested to pulverize into the minute foliage powder. The harvested foliages from each selected species were pulverized into 40 mesh particles after dried at $100{\sim}105^{\circ}C$ condition during 24 hours in drying oven. To compare the extending effect of plywood adhesives with these foliage powders 100 mesh wheat flour using at current plywood industry was also prepared. Foliage powder and wheat flour were extended into 10, 20, 30, 50 and 100% to the urea and phenol formaldehyde resin. After plywoods were processed by the above extending method shear strength of extended plywoods were analyzed and discussed. The results obtained at this study are as follows: 1) Among 10% extensions of urea formaldehyde resin plywood, dry shear strength of plywood extended by wheat flours was the highest and that of non-extended plywood the next. Plywood extended with foliage powder showed the lowest dry shear strength. The order of dry shear strength of plywoods extended by foliage powder was that of Oak foliage powder extension, the best, that of Sycamore, that of Pine, and that of Poplar. 2) Among 20% extensions of urea formaldehyde resin plywood, plywood extended by wheat flour showed the highest dry shear strength, and the next was plywood by Poplar foliage powder. All these two showed higher dry shear strength than non-extension plywoods. Except Poplar, dry shear strength of foliage powder extension plywoods was bad, but the order of dry shear strength of plywoods extended by foliage powder was Pine, Poplar and Oak. 3) In the case of 30% extensions of urea formaldehyde resin plywood, dry shear strength of wheat flour extension was the highest and non-extension the next. Dry shear strength of foliage powder extension plywoods was poor with a rapid falling-off in strength. 4) Among 50% and 100% extensions of urea formaldehyde resin plywood, only wheat flour showed excellent dry shear strength. In the case of foliage powder extension, low dry shear strength showed at the 50% extension of Pine and Poplar, and plywoods of 50% extension of Oak foliage powder delaminated without measured strength. All plywoods of 100% foliage powder extension delaminated, and then shear strength were not measured. 5) Among wet shear strength of 10% extensions of urea formaldehyde resin plywood, wheat flour extension was the highest as in the case of dry shear strength, and non-extension plywood the next. Except Poplar foliage extension, all foliage powder extension plywoods showed low shear strength. 6) Wet shear strength of plywoods of 20% extension lowered in order of non-extension plywood, plywood of wheat flour extension and plywood of foliage powder extension, but other plywoods of foliage powder extension except plywoods of Poplar and Oak foliage powder extension delaminated. 7) Wet shear strength of 30% or more extension of urea formadehyde resin plywood were weakly measured only at 30% and 50% extension of wheat flour, and wet shear strength of plywoods extended by foliage powder were not measured because of delaminating. 8) Dry shear strength of phenol formaldehyde plywoods extended by 10% wheat flour was the best, and shear strength of plywoods extended by foliage powder were low, but the order was Oak, Poplar, and Pine. Plywood of Sycamore foliage powder extension delaminated. 9) In the case of 20% extensions of phenol formaldehyde resin, dry shear strength of plywood extended by wheat flour was the best, but plywood of Pine foliage powder extension the next, and the next order was Oak and Poplar foliage powder. Plywood of Sycamore foliage powder extension delaminated. 10) Among dry shear strength of 30% extensions of phenol formaldehyde plywood, that of Pine foliage powder extension was on the rise and more excellent than plywood of wheat flour extension, but Poplar and Oak showed the tendency of decreasing than the case of 20% extension. Plywood of Sycamore foliage powder extension delaminated. 11) While dry shear strength of 50% and 100% extension plywoods were excellent in the case of Pine foliage powder and wheat flour extension, that of hardwood such as Poplar, Oak, and Sycamore foliage powder extension were not measured because of delaminating. 12) As a filler the foliage powder extension of urea formaldehyde resin is possible up to 20% with Poplar foliage powder. And also as an extender for phenol formaldehyde resin, Pine foliage powder can be added up to the same amount as that in the case of wheat flour.

  • PDF

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

Effect of Wood-Fiber Characteristics on Medium Density Fiberboard (MDF) Performance

  • Park, Byung-Dae;Kim, Yoon-Soo;Riedl, Bernard
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Four different sources of wood-fibers from Eucalyptus, Italian poplar, hemlock, and mixed species fibers were used to study the influence of their fiber characteristics on the performance of medium density fiberboard (MDF) panels bonded with both urea-formaldehyde (UF) and phenol-formaldehyde (PF) adhesives. Included fiber characteristics were fiber length, size distribution, bulk density, and acidity. Physical and mechanical properties of MDF panels manufactured by dry process using these different fibers were determined for the comparison of board performance. Two hardwood species had a large fraction of short fibers resulting in a higher bulk density while very long hemlock fibers had lower bulk density. Fiber acidity was revealed to strongly affect the internal bond (IB) strength of MDF panels bonded with UF resins. MDF panels made from mixed species fibers showed highest IB strength of all panels prepared. UF-bonded MDF panels showed poor dimensional stability. In conclusion, the present study showed that wood-fiber characteristics such as fiber length, bulk density, and acidity affect the performance of MDF boards, and also suggested that fiber characteristics be considered for MDF panel manufacture.

  • PDF

Green Adhesives Using Tannin and Cashew Nut Shell Liquid for Environment-friendly Furniture Materials

  • Lee, Jeong-Hun;Jeon, Ji-Soo;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.3
    • /
    • pp.219-229
    • /
    • 2011
  • Sick building syndrome symptoms that are experienced by building occupants may be caused by toxic substances such as formaldehyde and VOCs, which are known to be emitted from building materials and wood composite products such as wood-based panel, furniture, engineered flooring and construction adhesive. In Korea, the use of wood composite products for indoor environments has increased over the last decade. Recently, wood composite products have been installed in approximately 95% of newly constructed residential buildings. The use of these products has resulted in problems related to human health, and consequently a realization about the importance of indoor air quality. In addition, consumer demand is increasing for natural materials because conventional building materials and wood composite products are made by adding urea-formaldehyde resin or they contain formaldehyde-based resin. More recently, many efforts have been made to reduce formaldehyde emission from building materials that laid in the indoor environment. Especially, if conventional formaldehyde-based adhesives are replaced with green adhesives for residential spaces, it is possible to reduce most of the emission amounts of formaldehyde in indoor environments. In line with this expectation, many researches are being conducted using natural materials such as tannin and cashew nut shell liquid (CNSL). This study discussed the affects and possibilities of green adhesives to reduce formaldehyde emission in indoor environments.

  • PDF

Soybean-based Green Adhesive for Environment-friendly Furniture Material

  • Jeon, Ji-Soo;Lee, Jeong-Hun;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • Over the last decade, Sick Building Syndrome has become a significant social issue in Korea and many methods have been considered to maintain comfortable indoor air quality. To reduce toxic substances emitted from wood composite products, the source control is an efficient method through the reduction of formaldehyde content by using natural material-based adhesives for composite wood products production. Among alternative materials, soybean protein is considered an appropriate natural material to replace formaldehyde-based resin and many efforts have been made to produce new products, such as soap, shampoo, ink, resin, adhesive and textile through changing the chemical or physical properties of soybean. To process soybeans into these useful products, the beans are dehulled and the oil is removed by crushing at very high pressure or by solvent extraction. For use soybean as an adhesive, it is processed at temperatures below $70^{\circ}C$ to preserve the alkaline solubility of the proteins. In addition, soybean-based adhesive is undergone treatment process to improve mechanical properties using urea, urease inhibitor N-(n-butyl) thiophosphoric triamide and sodium dodecyl sulfate. The modified soybean-based adhesive exhibited sufficient mechanical properties to use as an adhesive for composite wood products. This paper is a review article to discuss the possibilities of soybean-based adhesive for environment-friendly furniture materials.

  • PDF

Effects of Formaldehyde/Urea Molar Ratio on Bonding Strength of Plywood and Properties of Sliver-PB and Strand-PB (F/U 몰비의 변이가 합판의 접착성과 Sliver-PB, Strand-PB의 물성에 미치는 영향)

  • Park, Heon;You, Young-Sam
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.38-45
    • /
    • 1999
  • This study was to figure out proper Formaldehyde/Urea molar ratio of UF resin with satisfactory bonding strength of plywood and properties of particleboard. The six kinds of UF resins were manufactured with F/U molar ratio 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The boards were made of three kinds of raw materials : Veneer, Sliver-Particle and Strand-Particle. Manufacturing condition of plywood : amount of mixing resin was 150g/$m^2$. The fourty secs/mm simple-pressing schedule in the pressure 10kgf/$m^2$ was applied for 480mm${\times}$700mm board at the temperature of $110^{\circ}C$ in a hot press. Manufacturing condition of particleboard : Target density was 0.65g/$cm^2$. The stepwise 9 minutes- multi-pressing schedule in the maximum pressure 40kgf/$cm^2$, the minimum pressure 15kgf/$cm^2$ was applied for $480mm{\times}634mm{\times}12mm$ board at the temperature of $150^{\circ}C$ in a hot press. The results are as follows : I. In bonding strength, plywood which was made by F/U molar ratio 1.2 showed the highest value. Other molar ratio resin also gave the satisfied value of KS standard, 7.5kgf/$cm^2$. 2. In internal bond strength of particleboard, Sliver-Particleboard(SLPB) and Strand-Particleboard(STPB) varied respectively from 5.9kgf/$cm^2$ to 4.8kgf/$cm^2$, from 6.7kgf/$cm^2$ to 5.4kgf/$cm^2$. SLPB with F/U=1.2 and STPB with F/U=1.6 had higher IB value. Also, both SLPB and STPB showed lower IB value in F/U molar ratio 2.0 and 1.0. 3. SLPB and STPB with six kinds of UF resin respectively satisfied bending strength of KS standard 150 Type(130kgf/$cm^2$) and 200 Type(180kgf/$cm^2$). Bending strength data for both of SLPB and STPB showed little or no loss from F/U=1.8 to F/U=1.2. Also, STPB was approximately two times higher than that of SLPB. Therefore, the raw material's shape had more effect on bending strength than the FlU molar ratio. 4. F/U=1.6 and 1.4 showed the lower thickness swelling in SLPB and STPB. All of STPBs satisfied thickness swelling of KS standard, under 12%.

  • PDF

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.