• Title/Summary/Keyword: Urea hydrolysis

Search Result 79, Processing Time 0.025 seconds

Characterization of Kinetics of Urea Hydrolysis in A Newly Reclaimed Tidal Soils

  • Kim, Hye-Jin;Park, Mi-Suk;Woo, Hyun-Nyung;Kim, Gi-Rim;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • It is imperative to study the hydrolysis of urea in high saline-sodic condition of a newly reclaimed tidal land in order to overcome the problems associated with use of urea fertilizer. The methodology adopted in this study tried to get a convenient way of estimating rate for N transformation needed in N fate and transport studies by reviewing pH and salt contents which can affect the microbial activity which is closely related to the rate of urea hydrolysis. The hydrolysis of urea over time follows first-order kinetics and soil urease activity in reclaimed soils will be represented by Michaelis-Menten-type kinetics. However, high pH and less microorganisms may delay the hydrolysis of urea due to decrease in urease activity with increasing pH. Therefore, the rate of urea hydrolysis should adopt $V_{max}$ referring enzyme activity ($E_0$) accounting for urease concentration which is indicative for urea hydrolysis, especially in a high saline and sodic soils.

Effect of Soil Water Contents on Urea Hydrolysis and Nitrification in a Newly Reclaimed Tidal Soils

  • Park, Mi-Suk;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The effect of soil water content on the transformation potential of N compounds derived from hydrolysis of urea applied in a reclaimed tidal soils which was saline-sodic was observed to evaluate nitrification rates of urea. Soil samples were collected from Moonpo series at the newly reclaimed area in Saemanguem. For the transformation potential of N compounds from urea (46% N), newly reclaimed tidal soils (RS) were amended with urea at the rates of 0, 10, and 20 kg $10a^{-1}$. With leachate obtained from the incubated RS in a leaching tube at $25^{\circ}C$, urea hydrolysis and nitrification were measured for a total of 30days. The cumulative amounts of $NO_3{^-}$-N in each of the four soils treated with urea was linear with time of incubation. Results showed that increase in pH occurred with increasing application rate of urea and volumetric water content due to hydrolysis of urea. The total N in the RS was decreased with incubation time, indicating that rates of urea hydrolysis was influenced by soil moisture conditions. Also, the cumulative amount of nitrate in RS gradually increased with increase in time of incubation.

Transport of Urea in Waterlogged Soil Column: Experimental Evidence and Modeling Approach Using WAVE Model

  • Yoo, Sun-Ho;Park, Jung-Geun;Lee, Sang-Mo;Han, Gwang-Hyun;Han, Kyung-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The main form of nitrogen fertilizer applied to lowland rice is urea, but little is known about its transport in waterlogged soil. This study was conducted to investigate the transport of urea in waterlogged soil column using WAVE (simulation of the substances Water and Agrochemicals in the soil, crop and Vadose Environment) model which includes the parameters for urea adsorption and hydrolysis, The adsorption distribution coefficient and hydrolysis rate of urea were measured by batch experiments. A transport experiment was carried out with the soil column which was pre-incubated for 45 days under flooded condition. The urea hydrolysis rate (k) was $0.073h^{-1}$. Only 5% of the applied urea remained in soil column at 4 days after urea application. The distribution coefficient ($K_d$) of urea calculated from adsorption isotherm was $0.21Lkg^{-1}$, so it was assumed that urea that urea was a weak-adsorbing material. The maximum concentration of urea was appeared at the convective water front because transport of mobile and weak-adsorbing chemicals, such as urea, is dependent on water convective flow. The urea moved down to 11 cm depth only for 2 days after application, so there is a possibility that unhydrolyzed urea could move out of the root zone and not be available for crops. A simulated urea concentration distribution in waterlogged soil column using WAVE model was slightly different from the measured concentration distribution. This difference resulted from the same hydrolysis rate applied to all soil depths and overestimated hydrodynamic dispersion coefficient. In spite of these limitations, the transport of urea in waterlogged soil column could be predict with WAVE model using urea hydrolysis rate (k) and distribution coefficient ($K_d$) which could be measured easily from a batch experiment.

  • PDF

Development of Voltammetric Urea Sensors Based Poly(3-methylthiophene) film (Poly(3-methylthiophene)막 위에 urease를 고착시킨 Voltammetric Urea Sensor의 개발)

  • 박성호;진준형;홍석인;민남기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.314-316
    • /
    • 2000
  • Urea is detected as an indicator of renal disease in the human body. For these reasons, many biosensors for urea have been developed based on the enzymatic reaction of urea hydrolysis catalyzed by urease. Potentiometric method is applied reversible reaction system. But urea hydrolysis reaction may not has a reversible reaction mechanism in electrode surface. Therefore we applied to voltammtricmethod to obtain a sensitivity curve. The sensitivity of sensors was 34 ${\mu}$A/decade.

  • PDF

Effect of pyroligneous acids on urease inhibition (요소분해 저해에 미치는 목초액의 영향 평가)

  • Park, Hyun Jun;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.173-178
    • /
    • 2017
  • This study was conducted to investigate the effect of pyroligneous acids on urea hydrolysis for the purpose of inhibiting ammonia volatilization during urea fertilizer application. Different types of synthetic urease inhibitors have been searched and developed, but their use is limited due to varying inhibition effects on soil urease, and environmental problems. In this study, the effect of pyroligneous acids, a natural substance, on urea hydrolysis in soil was evaluated by analyzing inhibition of urease activity. Pyroligneous acids inhibited plant urease and microbial urease activity, as well as soil urease with various urease complex. In addition, pyroligneous acids exhibited non-competitive urease inhibition effect through urease kinetics and inhibited urea hydrolysis in the soil. This study showed that pyroligneous acids treatment with urea fertilizer decreases the loss of urea fertilizer, improves the efficiency of nitrogen application on plant and reduces the amount of nitrogen fertilizers applied in soil.

Ammonium Thiosulfate as a Urease Inhibitor and Influence of Temperature and pH on Urea Hydrolysis Inhibition in an Upland Field (밭 토양에서 Ammonium Thiosulfate의 Urease 활성 저해효과와 이에 미치는 온도와 pH의 영향)

  • Lim, Sun-Uk;Seo, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.225-229
    • /
    • 1993
  • The objective of this research was to characterize the effect of ammonium thiosulfate(ATS) on soil urease activity and the influence of temperature and soil pH on inhibition of urea hydrolysis by ATS. The results obtained are summarized as follows. 1. Percent inhibition of urea hydrolysis ranged from 1.5~14.3% with 5% addition of ATS to urea to 7.6~20.5% with 10% inclusion at $25^{\circ}C$, which levels were lower than that of thiourea. 2. The effect of ATS on urease inhibition was greater in low temperature han high temperature. The addition of 10% ATS resulted in 62.6% and 41.7% inhibition of urea hydrolysis at $10^{\circ}C$ and $15^{\circ}C$, respectively. 3. The inhibitory effects of ATS were found rapidly or slowly at different soil pH. The inhibition of urease activity was showed after 24 hours at pH 6.0 and 6.5, while the hydrolysis of urea was inhibited by ATS after 48 hourse at pH 5.0, 7.0 and 7.5. Urea hydrolysis inhibitions after 72 hours incubation were similar at all pH tested. Therefore effects of ATS did not correlate with soil pH.

  • PDF

Microwave Synthesis of Hydrotalcite by Urea Hydrolysis

  • Yang, Zhiqiang;Choi, Kwang-Min;Jiang, Nanzhe;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2029-2033
    • /
    • 2007
  • Hydrotalcite, layered double hydroxides (LDH), with hexagonal morphology has been rapidly synthesized by microwave reaction within 1 hour by urea hydrolysis from homogeneous solution. Different synthesis parameters, Mg/Al molar ratio, microwave reaction temperature and microwave power were systematically investigated. Pure hydrotalcite phase was obtained for Mg/Al ratios of 2:1 and 3:1, and higher reaction temperature gave higher crystallinity. The hydrotalcite synthesized at 600W power shows the highest crystallinity and more homogeneous crystal size distribution. The hydrotalcite samples were characterized by powder X-ray diffraction (XRD), simultaneous thermogravimetric/differential thermal analysis (TG/DTA), Fourier Transform Infrared (FT-IR) and Scanning electron micrograph (SEM).

Influence of Hydrolytic Degradation on the Morphology of Cured Urea-Formaldehyde Resins of Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Jeong, Ho-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2011
  • In an effort to understand the hydrolytic degradation process of cured urea-formaldehyde (UF) resins responsible for the formaldehyde emission of wood-based composite panels, this study analyzed the influence of acid hydrolysis on the morphology of cured UF resins with different formaldehyde/urea (F/U) mole ratios such as 1.6, 1.4, 1.2 and 1.0. Field emission-scanning electron microscopy (FE-SEM) was employed to observe both exterior and fracture surfaces on thin films of cured UF resins before and after the etching with hydrochloric acid as a simulation of the hydrolytic degradation process. FE-SEM images showed that the exterior surface of cured UF resin with the F/U mole ratio of 1.0 had spherical structures after the acid hydrolysis while the other cured UF resins were not the case. However, the fracture surface observation showed that all the samples possessed spherical structures in the cured state of UF resins although their occurrence and size decreased as the F/U mole ratio increased. For the first time, we found the spherical structures in cured UF resins of higher F/U mole ratio of 1.4. After the acid hydrolysis, the spherical structures became a much predominant at the fracture surface. These results indicated that the spherical structures in cured UF resinswere much more resistant to the hydrolytic degradation by the acid than amorphous region.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types

  • Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.672-681
    • /
    • 2015
  • As a part of abating the formaldehyde emission of amino resin-bonded wood-based composite panels, this study was conducted to investigate hydrolytic stability of urea-melamine-formaldehyde (UMF) resin depending on various hydrolysis conditions and hardener types. Commercial UMF resin was cured and ground into a powdered form, and then hydrolyzed with hydrochloric acid. After the acid hydrolysis, the concentration of liberated formaldehyde in the hydrolyzed solution and mass loss of the cured UMF resins were determined to compare their hydrolytic stability. The hydrolysis of cured UMF resin increased with an increase in the acid concentration, time, and temperature and with a decrease in the smaller particle size. An optimum hydrolysis condition for the cured UMF resins was determined as $50^{\circ}C$, 90 minutes, 1.0 M hydrochloric acid and $250{\mu}m$ particle size. Hydrolysis of the UMF resin cured with different hardener types showed different degrees of the hydrolytic stability of cured UMF resins with a descending order of aluminum sulfate, ammonium chloride, and ammonium sulfate. The hydrolytic stability also decreased as the addition level of ammonium chloride increased. These results indicated that hardener types and level also had an impact on the hydrolytic stability of cured UMF resins.