• Title/Summary/Keyword: Urea application

Search Result 338, Processing Time 0.026 seconds

Kinetic Responses of Soil Carbon Dioxide Emission to Increasing Urea Application Rate

  • Lee, Sun-Il;Lim, Sang-Sun;Lee, Kwang-Seung;Kwak, Jin-Hyeob;Jung, Jae-Woon;Ro, Hee-Myoung;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • BACKGROUND: Application of urea may increase $CO_2$ emission from soils due both to $CO_2$ generation from urea hydrolysis and fertilizer-induced decomposition of soil organic carbon (SOC). The objective of this study was to investigate the effects of increasing urea application on $CO_2$ emission from soil and mineralization kinetics of indigenous SOC. METHODS AND RESULTS: Emission of $CO_2$ from a soil amended with four different rates (0, 175, 350, and 700 mg N/kg soil) of urea was investigated in a laboratory incubation experiment for 110 days. Cumulative $CO_2$ emission ($C_{cum}$) was linearly increased with urea application rate due primarily to the contribution of urea-C through hydrolysis to total $CO_2$ emission. First-order kinetics parameters ($C_0$, mineralizable SOC pool size; k, mineralization rate) became greater with increasing urea application rate; $C_0$ increased from 665.1 to 780.3 mg C/kg and k from 0.024 to 0.069 $day^{-1}$, determinately showing fertilizer-induced SOC mineralization. The relationship of $C_0$ (non-linear) and k (linear) with urea-N application rate revealed different responses of $C_0$ and k to increasing rate of fertilizer N. CONCLUSION(s): The relationship of mineralizable SOC pool size and mineralization rate with urea-N application rate suggested that increasing N fertilization may accelerate decomposition of readily decomposable SOC; however, it may not always stimulate decomposition of non-readily decomposable SOC that is protected from microbial decomposition.

Effects of Urease Inhibitor, Nitrification Inhibitor, and Slow-release Fertilizer on Nitrogen Fertilizer Loss in Direct-Seeding Rice

  • Lee, Jae-Hong;Lee, Ho-Jin;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.230-235
    • /
    • 1999
  • To study the effects of an urease inhibitor, N-(n-butyl)-thiophosphoric triamide (NBPT), and a nitrification inhibitor, dicyandiamide (DCD), on nitrogen losses and nitrogen use efficiency, urea fertilizer with or without inhibitors and slowrelease fertilizer (synthetic thermoplastic resins coated urea) were applied to direct-seeded flooded rice fields in 1998. In the urea and the urea+DCD treatments, NH$_4$$^{+}$ -N concentrations reached 50 mg N L$^{-1}$ after application. Urea+NBPT and urea+ NBPT+DCD treatments maintained NH$_4$$^{+}$ -N concentrations below 10 mg N L$^{-1}$ in the floodwater, while the slow-release fertilizer application maintained the lowest concentration of NH$_4$$^{+}$ -N in floodwater. The ammonia losses of urea+NBPT and urea+NBPT+DCD treatments were lower than those of urea and urea+DCD treatments during the 30 days after fertilizer application. It was found that N loss due to ammonia volatilization was minimized in the treatments of NBPT with urea and the slow-release fertilizer. The volatile loss of urea+DCD treatment was not significantly different from that of urea surface application. It was found that NBPT delayed urea hydrolysis and then decreased losses due to ammonia volatilization. DCD, a nitrification inhibitor, had no significant effect on ammonia loss under flooded conditions. The slow-release fertilizer application reduced ammonia volatilization loss most effectively. As N0$_3$$^{[-10]}$ -N concentrations in the soil water indicated that leaching losses of N were negligible, DCD was not effective in inhibiting nitrification in the flooded soil. The amount of N in plants was especially low in the slow-release fertilizer treatment during the early growth stage for 15 days after fertilization. The amount of N in the rice plants, however, was higher in the slow-release fertilizer treatment than in other treatments at harvest. Grain yields in the treatments of slow-release fertilizer, urea+NBPT+ DCD and urea+NBPT were significantly higher than those in the treatments of urea and urea+DCD. NBPT treatment with urea and the slow-release fertilizer application were effective in both reducing nitrogen losses and increasing grain yield by improving N use efficiency in direct-seeded flooded rice field.field.

  • PDF

The Effect of the Application Levels of Slurry and Urea on Productivity of Silage Corn (액상구비 및 요소의 시용수준이 Silage용 옥수수의 생산성에 미치는 영향)

  • 육완방
    • Journal of Animal Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • This experiment was conducted for the effects of application levels of slurry and urea on the production of silage corn. The result was as follows; 1. DM yield of silage corn was the highest in the 100kg/ha level of urea and 160kg/ha of slurry. 2. Crude protein content was increased with increasing slurry and urea. 3. Total N production was increased continuously with increasing slurry in the 100kg/ha of urea, however, it was not affected by 200kg of urea. 4. NDF content was not affected by an application levels of slurry and urea.

Fertilizer Placement Effect on Agronomic Characteristics of Burley Tobacco(N. tabacum L.) (시비방법이 버어리종 잎담배의 농경적 특성에 미치는 영향)

  • 조천준;배성국;임해건;김요태
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 1997
  • Recently the method of basal compound fertilizer (N : P : K = 18.2 : 9.8 : 35.0) Placement has been changed from banding to broadcasting in tobacco cultivation. The effects of the compound fertilizer placement, level of fertilizer and additional urea application on the agronomic characteristics, two chemical compositions and physical Properties of burley tobacco(Nicotiana tabacum L. cv. KB 108) were investigated at Chonju Experiment Station, Korea Ginseng and Tobacco Research Institute in 1995-1996. Six treatments consisted of (1) band (method of fertilizer Placement) + In kg/10a(compound fertilizer) + 0(additional urea applied), (2) broadcast+140+0, (3) broadcast+140+25, (4) band+180+0, (5) broadcast+180+0, and (6) broadcast +180+25. The additional urea was applied at hilling. No significant differences were detected between banding and broadcasting method of compound fertilizer Placement in field 9rowth, wield, organoleptic qualify(price Per kilogram), chemical composition and Physical properties of cured leaf, The increased compound fertilizer by 30%(40k/10a) or the additional urea application by 25kg per 10a produced slightly higher yield than the recommended amount of basal compound fertilizer without additional urea application did. It also increased the total alkaloid content of cured leaf. It is recommended that no more basal fertilizer above the recommended amount and no additional urea application are needed in burley tobacco fertilization, even though the method of basal fertilizer placement being chanced from banding to broadcasting. Key words : Nicotiana tabacum, fertilizer placement, additional urea.

  • PDF

Effects of Sawdust and Urea Application on Disease Severity and Streptomyces scabiei Pathogen Dynamics (톱밥 및 요소의 투입이 감자 더뎅이병 병원균(Streptomyces scabiei) 및 감자 더뎅이병 이병도 지수에 미치는 영향)

  • Bak Gyeryeong;Lee Jeong-Tae;Jee Sam-nyu
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.777-788
    • /
    • 2023
  • Potato common scab disease is caused by pathogens belonging to Streptomyces spp. and results in a serious yield loss worldwide. Despite decades of research aimed at disease management, a definitive control method remains undiscovered. This study aims to explore the correlation between the C/N ratio and urea application with potato common scab pathogen dynamics and disease severity. We applied sawdust with a high C/N ratio and urea into the soil prior to potato cropping, both in pot and field experiments. Disease severity assessments and quantification of the TxtB gene were conducted at the harvest stage. Furthermore, culture experiments were performed to assess the direct impact of urea on the pathogen. Our findings revealed that higher disease severity was correlated with a high C/N ratio application and pathogenic gene quantity. Urea exhibited a direct influence on S. scabiei activity, reducing the disease severity in pot experiments. However, the effects of urea application on disease suppression in the conductive field were inconclusive. Although the results of urea application experiments displayed inconsistencies between pot and field trials, urea worked as the control to suppress S. scabiei activity. Further investigations are needed under various field conditions to confirm these findings.

Studies on the comparison of forage value and the accelerating of growth for several forage crops as prior crops of paddy field (답전작 사료작물의 사료 가치 비교 및 생육촉진에 관한 연구)

  • Ki-Chang Hong;Sin-Won Kang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.83-92
    • /
    • 1973
  • In order to compare the forage value and to promote the growth without the hindrance of rice transplanting period for several forage crops as prior crops of paddy field, this experiment was conducted. Three kinds of foliar application, such solution as Urea, Gibb. and Gibb. +Urea were applied to promote the growth. The results gained are summarized as follows; 1. According to the forage crops, there were large difference of yields. The rankings of yield were shown as follows; Fresh weightㆍDry weight : Oats. Italian rye grass. White clover. Corn. Soybean. Crude protein content: Soybean. White clover. Corn. Italian rye grass. Oats. Crude protein Yield: White clover. Italian rye grass. Oats. Corn. Soybean. 2. The ranking of suitable forage crops as prior crops of paddy field were Oats, Italian rye grass, White clover, but Corn and Soybean were unsuited. 3. In general, length of stem, length and width of leaf were enlarged such rank as foliar application of Urea, Gibb. and Gibb. + Urea solution. There were apt to be increased fresh and dry weight by growth of stem length, these trend were shown among all crops and between foliar applications of same crops. 4. All crops were shown not only promoted growth but also increased yield by every treatments. The order of application effects were as follows; Fresh weigthㆍDry weigth: Gibb., Gibb. +Urea, Urea. Crude protein content and yield: Urea, Gibb, Gibb. + Urea. 5. In Oats, heading date was more accelerated 1, 2 and 3 days than control by foliar application of Urea, Gibb. and Gibb. + Urea respectively.

  • PDF

Transport of Urea in Waterlogged Soil Column: Experimental Evidence and Modeling Approach Using WAVE Model

  • Yoo, Sun-Ho;Park, Jung-Geun;Lee, Sang-Mo;Han, Gwang-Hyun;Han, Kyung-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The main form of nitrogen fertilizer applied to lowland rice is urea, but little is known about its transport in waterlogged soil. This study was conducted to investigate the transport of urea in waterlogged soil column using WAVE (simulation of the substances Water and Agrochemicals in the soil, crop and Vadose Environment) model which includes the parameters for urea adsorption and hydrolysis, The adsorption distribution coefficient and hydrolysis rate of urea were measured by batch experiments. A transport experiment was carried out with the soil column which was pre-incubated for 45 days under flooded condition. The urea hydrolysis rate (k) was $0.073h^{-1}$. Only 5% of the applied urea remained in soil column at 4 days after urea application. The distribution coefficient ($K_d$) of urea calculated from adsorption isotherm was $0.21Lkg^{-1}$, so it was assumed that urea that urea was a weak-adsorbing material. The maximum concentration of urea was appeared at the convective water front because transport of mobile and weak-adsorbing chemicals, such as urea, is dependent on water convective flow. The urea moved down to 11 cm depth only for 2 days after application, so there is a possibility that unhydrolyzed urea could move out of the root zone and not be available for crops. A simulated urea concentration distribution in waterlogged soil column using WAVE model was slightly different from the measured concentration distribution. This difference resulted from the same hydrolysis rate applied to all soil depths and overestimated hydrodynamic dispersion coefficient. In spite of these limitations, the transport of urea in waterlogged soil column could be predict with WAVE model using urea hydrolysis rate (k) and distribution coefficient ($K_d$) which could be measured easily from a batch experiment.

  • PDF

Release Pattern of Urea from Metal-urea-clay Hybrid with Montmorillonite and Its Impact on Soil Property

  • Kim, Kwang-Seop;Choi, Choong-Lyeal;Lee, Dong-Hoon;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.545-550
    • /
    • 2011
  • Urea intercalated into montmorillonite (MT) exhibits remarkably enhanced N use efficiency, maintaining its fast effectiveness. This study dealt with the release property of urea from metal-urea-clay hybrid with MT (MUCH) under continuous-flow conditions and the cumulative impacts of its successive application on physicochemical properties of soils. Releases of urea were completed within 4 hrs under continuous-flow condition regardless of the types and the leaching solutions. However, urea release property was significantly affected by both the form of fertilizer and the presence of electrolytes in solution. The fast release property of urea from MUCH in continuous-flow condition was not significantly affected by soil properties such as soil pH and soil texture. In addition, its successive application did not lead to any noticeable change in soil physicochemical properties, water stable aggregate rate, water holding capacity and cation exchange capacity in both sandy loam and clay loam soils. Therefore, this study strongly supported that urea intercalated into MT could be applied as fast-effective N fertilizer, in particular for additional N supply.

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.

Reduced use of nitrogen fertilizer through retarded hydrolysis of urea by pyroligneous acid for Chinese cabbage cultivation (배추 재배 시 목초액에 의한 요소 가수분해 지연을 통한 질소비료 절감 효과)

  • Lee, Joo-Kyung;Park, Hyun Jun;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Urea is one of the most common nitrogen fertilizer, but nitrogen use efficiency by crop is low because of rapid hydrolysis of urea and loss of nitrogen in environments. Therefore, it is important to control the nitrogen release from nitrogen fertilizers. In this study, pyroligneous acid (PA) was used as a mean to inhibit urease in soil and prevent excessive nitrogen release from urea. Active ingredient in PA (AI) inhibited ammonification of urea in soil by reducing extracted ammonium nitrogen at 79.7% compared to the soil without PA. In order to evaluate the effect of PA on fertilization efficiency of urea, Chinese cabbage (Brassica campestris var. Pekinensis) was cultivated in soil treated with urea and PA both in pot and field. For PA treatment, half amount of urea was used compared to the amount of urea conventionally applied to Chinese cabbage. The PA treatment with half amount of urea resulted in similar Chinese cabbage biomass to the conventional urea application. Nitrogen concentration in Chinese cabbage was less in PA treatment indicating that Chinse cabbage effectively used nitrogen. Consequently, fertilization of urea with PA will reduce amount of fertilizer and frequency of application.