• Title/Summary/Keyword: Urea Decomposition

Search Result 57, Processing Time 0.023 seconds

Effect of Zeolite Supplement on the Composition of Compost (퇴비제조시(堆肥製造時) Zeolite의 혼입효과에 관(關)한 연구(硏究))

  • Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.223-227
    • /
    • 1983
  • This study was conducted to investigate the effect of supplement of Zeolite mineral whose C.E.C. is high, on the nutrients content in the compost and changes of compost status during its stacking period in 1982. The results obtained were summarized as follows : 1. By the supplement of Zeolite, the decomposing temperature in the compost was tended to be continued higher rather than that of nonsupplemented plot. 2. The contents of $NH_4-N$, $P_2O_5$, and $SiO_2$ in the compost were conspicuously increased by the supplement of Zeolite, poultry manure and urea etc, during the stacking period. It was considered that the supplement of Zeolite was much effective on the prevention of the waste of nutrients in the compost because the nutrients content was shown much high along with the progress of decomposition. 3. It was accepted to be the effect of Zeolite on shortening the period of compost decomposition and the prevention of the waste of nutrients content because the C/N ratio of the compost plots to supplement with the mixture of poultry manure, urea and Zeolite were 21.7 - 25.0 at 30 days after stacking but its of non-Zeolite treated plots were 21.3 - 24.8 at 60 days after stacking. 4. The C/N ratio in the compost and decrease rate of compost volume at 90 days after stacking was found to be significantly negative correlation.

  • PDF

DeNOx Characteristics of Hybrid SNCR-SCR Process in a Pilot Scale Flow Reactor (파일럿 규모 반응기에서 Hybrid SNCR-SCR 공정의 질소산화물 저감 특성)

  • Eom, Won-Hyun;Yoo, Kyung-Seun;Kim, Sung-June
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • DeNOx characteristics of hybrid SNCR-SCR process have been investigated in a pilot scale flow reactor. DeNOx efficiency of SNCR reaction was about 80% at $970^{\circ}C$ and hybrid SNCR-SCR process showed 92% at $940^{\circ}C$ with NSR = 2.0. Compared to SNCR process alone, hybrid SNCR-SCR process was more effective at cool side, which is lower than $940{^{\circ}C}$. It should be also noted that ammonia slip from hybrid SNCR-SCR process was below 1ppm at the condition of higher space velocity and the required catalyst volume can be decreased to 2/3 of SCR process. Key factors for DeNOx efficiency of hybrid SNCR-SCR process were found to be $NH_3$ concentration and NOx selectivity of urea injected in SNCR process.

Spherical UO3 Gel Preparation Using the External Gelation Method (External Gelation 방법을 이용한 구형 UO3 Gel 입자 제조)

  • Jeong, KyungChai;Kim, YeonKu;Oh, SeungChul;Cho, Moon-Sung;Lee, YoungWoo;Chang, JongWha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.729-736
    • /
    • 2005
  • HTGR (High Temperature Gas-cooled Reactor) is spotlighted to next generation nuclear power plant for producing the clean hydrogen gas and the electricity. In this study, the spherical $UO_3$ gel particles were prepared by the external gelation process, and the characteristics of these particles were analyzed the particle shape, composition of precipitate, and thermal decomposition characteristics with the Streoscope, FT-IR, and X-ray diffractometer. Raw material of the ADUN (Acid Deficient Uranyl Nitrate) solution, which has [$NO_3$]/[U] mole ratio = 1.75, was obtained from dissolution of the $U_{3}O_{8}$ powder with concentrated $HNO_3$, and its concentration is 3.5 M-U/l. The broth solution is prepared with the ADUN, urea, PVA, and THFA solution. The droplets of the broth solution was made through a nozzle system. From this study, we obtained the following results; 1) an externel chemical gelation process is a suitable method in the spherical $UO_3$ particle production, 2) the particle shape are changed by an urea mixing time, THFA volume, and the viscosity of the broth solution, 3) the amorphous $UO_3$ particles obtained from these experiments was converted to $U_{3}O_{8}$ and then $UO_2$ by heat treatment in hydrogen atmosphere at $600^{\circ}C$.

Conversion Rate of Gaseous Ammonia to Particulate Ammonium During Atmospheric Transport (대기 수송중 암모니아의 암모늄염으로의 전환속도)

  • Kim Hui-Kang;Y. Hashimoto;Yong-Kuen Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 1982
  • The concentrations of gaseous ammonia and particulate ammonium emitted from a urea plan were measured, and the conversion rate of ammonia to ammonium was estimated. The conversion of ammonia to ammonium has two stages with transport time in the atmosphere. In the initial 15min the conversion rate was 3.2% min$^{-1}$, and thereafter 0.26% min$^{-1}$. The high conversion rate of ammonia to ammonium at the initial period of it's transport might be due to the dissolution of ammonia into water droplets formed by the decrease in temperature of the stack effluent. The concentration of ammonium is further increased by the decomposition of urea in alkaline droplet formed. Half-lives of ammonia gas at initial and latter slag were 16 min and 192 min respectively. No correlation of particulate ammonium concentration to temperature, relative humidity, and concentrations of sulfur dioxide, nitrogen oxides and airborne particulate matter were found in this field measurement.

  • PDF

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Engineering Characteristics of Cemented Sand with Microorganism Using Eggshell as Calcium Source (달걀껍질을 칼슘원으로 사용한 미생물 고결 모래의 공학적 특성)

  • Choi, Sun-Gyu;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.5-13
    • /
    • 2016
  • A calcium source is necessary for calcite precipitation within soil particles by microbial decomposition of urea and a calcium chloride is usually used. The harmful environmental impact of calcium chloride on road, ground and plants is severe. In this study, an eggshell with vinegar is investigated for an environmental-friendly calcium source. Urea-decomposing microorganism and eggshell or calcium chloride as a calcium source are mixed with Ottawa sand to precipitate calcite. Then, the cemented sand with calcite is tested for calcite precipitation, permeability and unconfined compressive strength. A specimen is prepared by loose Ottawa sand in a size of 5 cm in diameter and 10 cm in height. A urea solution with Sporosarcina pasteurii and two different calcium sources is injected into the specimen once a day for 30 days. Calcite precipitated at average of 7.2% on the specimen with eggshell as a calcium source, which was 1.2 times more than that with calcium chloride. The permeability of a specimen with eggshell was at average of 3.82E-5 cm/s, which was 7.7 times lower than that with calcium chloride. Unconfined compressive strength of a specimen with eggshell was at average of 387 kPa, which was 1.2 times higher than that with calcium chloride. As more calcite precipitated, the strength increased while the permeability decreased, regardless of calcium sources.

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

Study of Inorganic Photocatalyst Media for Reused Wastewater (폐수 재이용을 위한 무기계 광촉매 담체 연구)

  • Lee, Gyuyoung;Kim, Jungchul;Lim, Jihyun;Lee, Junwoo;Park, Jeongmi;Lee, Seunghun;Nam, Jukyung;Lee, Yong-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • This study focused on effective decomposition methods for low concentrated organic compounds from the reuse of industrial wastewater, and confirmed the possibility through photocatalyst media. Photocatalyst immobilized media was developed to carry on this experiment which confirmed the removal possibility of low concentrated organic compounds. Considering the stability and efficiency of photocatalyst immobilization, inorganic support, hollow bead, and $TiO_2$ nano powder were used. As a result of the removal experiment, the removal efficiencies of acetonitrile, ethanol, IPA(Isopropyl alcohol), methanol were above 75% after 15 minutes while those of acetone, acetaldehyde, urea were 10%, 45%, 20%, respectively after 60 minutes. If further studies were made to increase the surface area of the photocatalyst immobilized media, the efficiency of the removal of low concentrated organic compounds can be improved and this solution can also be used in an actual treatment process.

A Study on the Anionisation of Cotton Fabric (면직물의 음이온화에 관한 연구)

  • Bae, Do Gyu;Lee, Tae Jung
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • Cotton has no adsorption ability for the cationic dye and heavy metal but, if anionized cotton can be made, it will be possible. In this study, to enable the anionisation of cotton fabric, it was modified using sodium vinylsolfonate(SV) as the anionisation reagent, employing a pad-dry-cure(PDC) technique. The effects of curing time, treatment concentrations of urea, sodium hydroxide and SV on the weight increase were experimented and then, the physical characterizations of sulfoethyl cotton(SEC) depending on the finishing conditions were estimated, thus the application possibility of SV as anionisation reagent was investigated. It was not much changed by anionisation except wrinkle recovery. And the structure of SEC was elucidated by Raman and NMR spectoscopy. The feasibility of using Raman and NMR spectroscopy with the band at $1,043cm^{-1}$, and 50.5ppm, respectively as marker band to determine sulfoethyl group of SEC was reported. The total degree of SV substitution(DSV) was determined via elemental analysis. SEC with diverse total DSV up to 0.066 was obtained. In the thermal decomposition(pyrolysis) by DSC, it can be found that the pyrolysis temperature was about $30^{\circ}C$ lower than that of non-treated cotton fabric.

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.