• Title/Summary/Keyword: Urban streams

Search Result 234, Processing Time 0.025 seconds

Environmental Impact Assessments along with Construction of Residential and Commercial Complex (주거단지 건설이 하천에 미치는 생태영향평가)

  • An, Kwang-Guk;Han, Jeong-Ho;Lee, Jae Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Ecological Role of Urban Stream and Its Improvement (도시하천의 생태학적 역할과 개선방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.15-25
    • /
    • 1998
  • A stream plays an important role as the source of drinking water, the ecological space and the living space. But the today's urban stream whose ecosystem is destroyed and water quality become worse in consequence of covering, concrete dyke construction, and the adjustment of high-water-ground[dunchi], is deprived of the function as a stream. Therefore this paper aims to elucidate the role that urban stream plays ecologically and to try to find a improvement to the problem. A stream is the pathway through which several types of the solar radiation energy are transmitted and the place which is always full of life energy. In the periphery of a stream, primary productivity is high and carrying capacity of population is great. Thus ancient cities based on agricultural products grew out of the fertile surroundings of stream. In Korea most cities of the Chosen Dynasty Period based on the agriculture have grown out of the erosional basins where solar energy is concentrated. The role of a stream in this agricultural system is the source of energy and material(water and sediment) and a lifeline. In consequence of the growth of cities and the rapid growing demands of water supply after the Industrial Revolution, a stream has become a more important locational factor of city. However, because cities need the life energy of urban streams no longer, urban streams cannot play role as a lifeline. And As pollutant waste water has poured into urban streams after using external streams' water, urban streams have degraded to the status of a ditch. As the results of the progress of urbanization, the dangerousness of inundation of urban stream increased and its water quality became worse. For the sake of holding back it, local governments constructed concrete dyke, adjusted high-water-ground[dunchi], and covered the channel. But stream ecosystem went to ruin and its water quality became much worse after channelization. These problems of urban stream can be solved by transmitting much energy contained in stream to land ecosystem as like rural stream. We should dissipate most of the energy contained in urban stream by cultivating wetland vegetation from the shore of stream to high-water-ground, and should recover a primitive natural vigorous power by preparation of ecological park.

  • PDF

Changes and Influences of Stream Water Quantity due to Urbanization: Focusing on Urban Streams in Gyeonggi-do (도시화에 따른 하천수량 변화 및 영향_경기도 도심하천을 중심으로)

  • Noh, Huiseong;Jo, Dongho;Kim, Yonsoo;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.491-500
    • /
    • 2017
  • Stream water quantity is the most basic, fundamental and important element for stream water quality and for conservation of ecological environment. This study aims to analyze causes of changes in stream water quantity based on the percentage of impervious surface area (%ISA) in urban streams of Gyeonggi-do, and also to present a method to secure water quantity of urban streams in Gyeonggi-do and data to be applied to River Management Policy. For this purpose, the Anyangcheon watershed, the Tancheon watershed, and the Osancheon watershed were selected as samples of the urban streams. In addition, the stream water quantity and the changes in stream water quality which were based on the amount of ISA, and methods to directly and indirectly secure stream water quantity were investigated. The results are as follows. The amounts of ISA of the Anyangcheon watershed, of the Tancheon watershed, and of the Osancheon watershed showed a 5.32%, 6.32%, and 7.22% increase, respectively, from 2014 which was approximately 10 years ago. The runoff coefficient generally increased as the amount of ISA was increased. Water reuse quantity of stream in the Tanchon watershed had a positive effect on securing stream water quantity, but both in the Anyangcheon watershed and in the Osancheon watershed, it did not have a positive effect on that. However, water reuse quantity of stream improved the water quality of each stream.

Analysis of the Effect of Bio-Retention Cells to Improve Water Cycle and Water Quality in Urban Streams (도시하천의 물순환 및 수질 개선을 위한 생태저류지의 효과분석)

  • Kim, Kyungmin;Choi, Jeonghyeon;Kim, Suhyeon;Kang, Lim-Seok;Shin, Hyunsuk;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.224-235
    • /
    • 2019
  • Rapid urbanization poses three major problems in urban streams. The first problem is the reduction of soil wetting from rainfall as the impervious area increases. Decrease in soil wetting causes serious distortion in the water cycle of urban streams. The second problem is the increase of non-point sources pollutants by urban land use, and the third problem is the combined sewer overflows in the old city center. Increased non-point sources pollutants and combined sewer overflows are associated with water cycle distortion, which increases water pollution in urban streams. In this study, EPA SWMM was constructed for the Busan Oncheon-stream watershed in order to suggest solutions for these three problems, and the bio-retention cells installation project was planned by benchmarking the actual projects in New York City. Water cycle improvement and reduction of non-point sources pollutants and combined sewer overflows for each project scenario were analyzed together with required budgets.

An Experimental Study of Backwater Effects Caused by the Covered Reach of Urban Streams

  • Yoon, Yong-Nam;Ahn, Jae-Hyun;Kim, Jin-Kwan
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.19-30
    • /
    • 1997
  • The hydraulics of flow within the covered reach of urban streams is very complicated due to the accumulation and interference effect of eddies around the multipli piers supporting the covering slab. An extensive experimental study is done to quantitatively estimate the backwater rise effect caused by various arrays of multiple piers. The factors governing the backwater rise are found out to be the contraction ratio due to the piers. Foude number of the flow, longitudinal pier spacing, and the length of the covered reach. For a single section of lateral pier arralyzed and a multiple regression equation derived. The effect of multiple piers, arrayed in both lateral and longitudinal directions. on the backwater rise is analyzed in terms of the contraction ratio. Froude number, longitudinal pier spacing and the total length of the covered reach. A multiple regression equation for the backwater rise estimation is proposed based on the experimental data collected in this study.

  • PDF

Context-aware Video Surveillance System

  • An, Tae-Ki;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • A video analysis system used to detect events in video streams generally has several processes, including object detection, object trajectories analysis, and recognition of the trajectories by comparison with an a priori trained model. However, these processes do not work well in a complex environment that has many occlusions, mirror effects, and/or shadow effects. We propose a new approach to a context-aware video surveillance system to detect predefined contexts in video streams. The proposed system consists of two modules: a feature extractor and a context recognizer. The feature extractor calculates the moving energy that represents the amount of moving objects in a video stream and the stationary energy that represents the amount of still objects in a video stream. We represent situations and events as motion changes and stationary energy in video streams. The context recognizer determines whether predefined contexts are included in video streams using the extracted moving and stationary energies from a feature extractor. To train each context model and recognize predefined contexts in video streams, we propose and use a new ensemble classifier based on the AdaBoost algorithm, DAdaBoost, which is one of the most famous ensemble classifier algorithms. Our proposed approach is expected to be a robust method in more complex environments that have a mirror effect and/or a shadow effect.

The Vegetational Diagnosis for the Ecological Rehabilitation of Stream - In case of the Forest Communities, Soil in Namhan river - (하천의 생태적 복원을 위한 식생학적 연구 - 남한강 육상식물, 토양을 중심으로 -)

  • Myung, Hyun
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.113-127
    • /
    • 2009
  • This study was designed to present a river model with an aim at restoring the ecosystem and improving the landscape along the urban rivers on the basin of the Namhan river, a core life channel for the National Capital region. The revelation of botanical status, transition trend and correlation of plants might lead to providing the urban river restoration projects and ecological river formation projects with basic data for a model of ideal aquatic ecology and landscape. The outcomes of this study could be summed up as follows: 1. Communities of Juglans mandshurica, Cornus controversa and Fraxinus mandshurica constitute the main portion of flora at or around uppermost branch streams of the River Namhanis harbored mainly in and around small brooks 2. Typical terrestrial forest communities formed around the River Namhan are composed mainly of Larix leptolepis, Pinus rigida, planned forestation of Pinus koraiensis, Quercus acutissima, Quercus variabilis and Pinus densiflora. 3. The analysis into terrestrial environment of plant communities showed a high content of $P_2O_5$, typical communities found in the artificially disturbed land Finally, it seems also desirable to continue to make every exertion to explore the relationship between fluvial and terrestrial ecologies with a purport of building up a model of natural streams in urban area based on the surveyed factors for plant life, forest communities, soil and landscape and, moreover, on the forecasting for overall influences derived from the relation upon the ecosystem.

Impoundments Increase Potential for Phosphorus Retention and Remobilization in an Urban Stream

  • Vo, Nguyen Xuan Que;Doan, Tuan Van;Kang, Hojeong
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.175-184
    • /
    • 2014
  • Weirs are conventional structures that control water level and velocity in streams to facilitate water resource management. Despite many weirs built in streams, there is little information how weirs change hydrology regime and how that translates to sediment and phosphorus (P) responses. This study evaluated the influence of weirs on P retention and mobilization in an urban tributary of the Han River in Korea. Total P concentrations in sediments upstream of weirs were higher than the downstream site, mainly due to the increase of potentially available fractions (labile P and aluminum- and iron-bound P) (p < 0.05). Equilibrium phosphorus concentrations ($EPC_o$) were lower than soluble reactive phosphorus (SRP) concentrations of stream waters, but there was an increasing trend of sediment $EPC_o$ upstream of weirs compared to the downstream site (p < 0.001) indicating a greater potential for P release upstream of weirs. Sediment core incubation showed that SRP release rates upstream of weirs were higher than the downstream site under anoxic conditions of the water column (p < 0.01), but not under oxic conditions. SRP release rates under anoxic conditions were greater than that measured under oxic conditions. Un-neutral pH and increased temperature could also enhance SRP release rates upstream of weirs. We conclude that weirs can increase P retention within stream sediments and potentially promote significant P releases into waters, which in turn cause eutrophication.