• Title/Summary/Keyword: Urban storm water

Search Result 216, Processing Time 0.032 seconds

Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul (우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이재준;이정식;전병호;이종태
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.49-57
    • /
    • 1993
  • A hydrological method is performed to determine the critical duration of design rainfall for the design of storm sewer in Seoul. To seize the effect of the duration and the temporal distribution of the rainfall to the peak discharge of the storm sewer, the Huff's quartile method is used as a temporal pattern for the design rainfall of any durations (9 cases for 20-240 min.) with 10 years return period. The critical duration of design rainfall is determined as the duration which maximizes the peak discharge. This study is applied to 18 urban drainage systems in Seoul. The ILLUDAS model is applied to runoff analysis, and the result shows that the duration which maximizes peak discharge is 30, 60 minutes generally. The relation diagram between peak discharge for the critical duration and watershed area is prepared for the design of storm sewer.

  • PDF

Effect of Rainfall Design Frequency Determination on the Design of Storm Sewer System (강우 확률년수의 설정이 우수관거 설계에 미치는 영향)

  • Lee, Cheol-kyu;Hyun, In-hwan;Dockko, Seok;Kim, Hyung-jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.647-654
    • /
    • 2005
  • Recently, the economic losses caused by inundation are increasing due to the urbanization and industrialization, i.e., intensive land utilization and concentration of population and properties. It is regarded that the role of the storm sewer systems in urban areas becomes more important as one of the effective countermeasures for reducing the inundation losses. In this study, the effects of rainfall design frequency enhancement on the construction cost of the storm sewer systems were analyzed by increasing the design frequency from the present design frequency of the sewer systems, which is 5~10 years, to 15 years, 20 years and 30 years. The change rate functions of the design discharge and construction cost based on the various design frequencies were derived by regression analysis. According to the analysis, change the rate of design discharge at 15, 20, 30 years rainfall design frequencies were increased by 10%, 17.1%, and 27.2%, respectively, when compared to that at 10 year frequency. Furthermore, it was found that by increasing the design frequency from 10 years to 15 years, 20 years and 30 years, the construction costs were increased by 5.0%, 8.0% and 12.4%, respectively. Finally, their reliabilities need to be tested by applying the rate functions to the real storm sewer districts.

Application of LID Methods for Sustainable Management of Small Urban Stream Using SWMM (SWMM 모델을 이용한 지속 가능한 도시 소하천 관리를 위한 LID 기법의 적용 방안 연구)

  • Han, Yanghui;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.691-697
    • /
    • 2014
  • Though the upper stream basin area of Gwanpyung-Cheon in Daejeon, Korea is protected as Green Belt Zone, the stream is under constant environmental pressure due to current agricultural practices and infrastructure development in its basin area. To develop appropriate integrated water resources management plan for the stream, it is necessary to consider not only water quality problems but also water quantity aspect. In this study, Storm Water Management Model (SWMM) was calibrated and validated with sets of field measurements to predict for future water flow and water quality conditions for any rainfall event. While flow modeling results showed good agreement by showing correlation coefficient is greater than 0.9, water quality modeling results showed relatively less accurate levels of agreements with correlation coefficient between 0.67 and 0.87. Hypothetical basin development scenarios were developed to compare effect on stream water quality and quantity when Low Impact Development (LID) technologies are applied in the basin. The results of this study can be used effectively in decision making processes of urban development Gwanpyung-Cheon area by comparing basin management alternatives such as LID methods.

A Sensitivity Analysis of Model Parameters involved in Clark Method on the Magnitude of Design Flood for urban Watersheds (CLARK 유역추적법에 의한 계획홍수량 산정에 미치는 매개변수의 민감도 분석)

  • Yoon, Kwang-Wonn;Wone, Seog-Yeon;Yoon, Yong-Nam
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 1994
  • A Sensitivity analysis on the model parameters involved in the Clark watershed routing method is made to demonstrate the effect of each parameter on the magnitude of 50-year design flood for small urban streams. As for the rainfall parameter the time distribution pattern of design storm was selected. For short duration storms Huff, Yen & Chow and Japanese Central type distributions were selected and the Mononobe distribution of 24-hour design storm was also selected and tested for Clark method application. The effect of SCS runoff curve number for effective rainfall and the methods of subbasin division for time-area curve were also tested. The routing parameter, i.e. the storage constant(K), was found to be the dominating parameter once design storm is selected. A multiple regression formula for K correlated with the drainage area and main channel slope of the basin is proposed for the use in urban stream practice for the determination of design flood by Clark method.

  • PDF

Analysis of Inundation Causes in Urban Area based on Application of Prevention Performance Objectives (도시유역에서의 방재성능목표 적용과 침수원인 분석)

  • kim, Jong-Sub
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The purpose of this study is to analyze quantitatively the inundation causes by applying the prevention of performance objectives using the urban storm water runoff model XP-SWMM. The model was built by using DTM and storm sewer-network with the storm sewer and geo-data of the study area as input-data to assess the current performance of prevention. An analysis of the causes of the inundation by the frequency and the rainfall-duration. As a result, lack of pipe capacity due to flooding, as well as inundation heavier that the backwater rainfall occurs due to the rise of water level of outside. For solve the inundation damage, It is necessary to improvement pipe of capacity lack and installation of a flood control channel.

Determination of the number of storm events monitoring considering urban stormwater runoff characteristics (도시지역의 강우유출수 특성 분석을 통한 적정모니터링 횟수 도출)

  • Choi, Jiyeon;Na, Eunhye;Kim, Hongtae;Kim, Jinsun;Kim, Yongseck;Lee, Jaekwan
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.515-522
    • /
    • 2017
  • This study investigated the runoff characteristics containing NPS pollutants in urban areas and estimated the optimal number of storm events to be monitored. 13 residential areas, 8 commercial areas, 9 transportation areas and 11 industrial areas were selected to be monitored located in urban areas. Monitoring was performed from 2008 to 2016 with a total of 632 rainfall events. As a result, it was found that commercial area needs priority NPS management compared to other landuses because the commercial area has high runoff coefficient and NPS pollutant EMC compared with other landuses. The annual monitoring frequency for each landuse was estimated to be 11 to 14 times for industrial area, 12 to 14 times for transportation area, 11 to 13 times for commercial area and 22 to 25 times for residential area. Even with the use of accumulated monitoring data for several years, there is still high probability of uncertainty due to high error in some pollutant items, and it is necessary to establish monitoring know-how and data accumulation to reduce errors by continuous monitoring.

The application of reliability analysis for the design of storm sewer (우수관의 설계를 위한 신뢰성해석기법의 적용)

  • Kwon, Hyuk Jaea;Lee, Kyung Je
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.887-893
    • /
    • 2018
  • In this study, the optimum design technology is suggested by using reliability analysis method. Nowadays, urban flood inundation is easily occurred because of local heavy rain. Traditional deterministic design method for storm sewer may underestimate the size of pipe. Therefore, stochastic method for the storm sewer design is necessary to solve this problem. In the present study, reliability model using FORM (First Order Reliability Method) was developed for the storm sewer. Developed model was applied to the real storm sewers of 5 different areas. Probability of exceeding capacity has been calculated and construction costs according to diameter have been compared. Probability of exceeding capacity of storm sewers of 5 areas have been calculated after estimating the return period of rainfall intensity.

Flood Simulation for Basin-Shaped Urban Watershed Considering Surface Flow (분지형 도시유역에서의 노면류를 고려한 침수모의)

  • Ahn, Jeonghwan;Cho, Woncheol;Jung, Jaehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.841-847
    • /
    • 2014
  • Urban runoff models have been continuously developing with concerns for urban flood. Recently, models that be able to quantitatively analyze surface inundation caused by overflowed water from storm sewer were also developed by coupling 1-dimensional sewer model and 2-dimensional surface flow model. However, only overflowed water from storm sewer can be analyzed by the models have been developed until now. They are limited to be not able to analyze surface inundation caused by surface runoff that could not flow into the storm sewer. In order to overcome the limitation, basin-overlap method was devised adding a dummy 1-dimensional sewer layer to the model, so it can consider the efficiency of inflow to the storm sewer system. XP-SWMM 2011 is applied for urban runoff model and the flood event occurred on July 27, 2011 in basin-shaped Sadangcheon watershed is chosen for study inundation event. According to simulation results basin-overlap method reappear the observed inundation event more precisely than traditional method. This results suggest that drainage system has to be improved for reducing inundation caused by surface runoff and would be used as considerations for planning an urban basin design magnitude.

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

The Performance of Pollutant Removal Using Nonpoint Treatment Filtration Device and Analysis of the Filter Backwashing Effect (여과형 비점오염 처리장치의 오염물질 제거특성 및 역세척 분석)

  • Lee, Jun-ho;Yang, Seung-ho;Bang, Ki-woong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • Hydrocyclone is widely used in industry, for its simple design, high capacity, low maintenance and low operational cost. The objective of this study is to develop hydrocyclone coagulation and filtration system. The system is made of hydrocyclone ballasted coagulation with polyaluminium chloride silicate (PACS) and upflow filter to treat micro particles in urban storm runoff. Roadside sediment particles (< $200{\mu}m$) was mixed with tap water to make various turbid suspensions to simulate urban storm runoff. The filter cartridge was filled with polyethylene media system and ran 1hr per everyday and total operation time were 8.19hrs and backwashing everyday after end of operation. The operation condition of flowrate was $8.2{\sim}11.9m^3/day$ (mean $10.1m^3/day$) and surface overflow rate (SOR) based on filter surface area was $45.5{\sim}65.9m^3/m^2/day$ (mean $55.7m^3/m^2/day$). The range of PACS dosage concentration was 14.0~31.5 mg/L. As the results of operation, the range of removal efficiency of turbidity, SS were 81.0~95.8% (mean 89.5%) 81.8~99.0% (mean 91.4%), respectively. An increase of filtration basin retention time brought on increased of removal efficiency of turbidity and SS, and increase of SOR brought on decreased of removal efficiency. During the first flush in urban area, storm runoff have an high concentration of SS (200~600 mg/L) and the filtration bed becomes clogged and decreased of removal efficiency. Backwashing begins when the drainage pipe valve at the filtration tank bottom is completely open (backwashing stage 1). Backwashing stage 2 was using air bubbles and water jet washing the media for 5 mins and open the drainage valve. After backwashing stage 1, 2, 61.83~64.04%, 18.53~27.51% of SS loading was discharged from filtration tank, respectively. Discharged SS loading from effluent was 7.12~14.79% and the range of residual SS loading in fliter was 2.26~5.00%. The backwashing effects for turbidity, SS were 89.5%, 91.4%, respectively. The hydrocyclone coagulation and filtration with backwashing system, which came out to solve the problems of the costly exchange filter media, and low efficiency of removing micro particles of filter type nonpoint treatment devices, is considered as an alternative system.