• Title/Summary/Keyword: Urban roadside

Search Result 128, Processing Time 0.026 seconds

Characteristics of PM2.5 Emission and Distribution in a Highly Commercialized Area in Seoul, Korea (상업지역의 초미세먼지(PM2.5) 발생특성 연구)

  • Seo, Young-Ho;Ku, Myeong-Seong;Choi, Jin-Won;Kim, Kyeong-Min;Kim, Sang-Mi;Sul, Kyung-Hwa;Jo, Hyo-Jae;Kim, Su-Jin;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • The pollution of particulate matter (PM) is considered one of the hot socioenvironmental issues at present time. In this study, we investigated the distribution of fine particulate matter ($PM_{2.5}$) in Wangsimni commercial areas in Seoul, Korea to learn more about its environmental behavior in an urban area. Our analysis of $PM_{2.5}$ was made to distinguish the $PM_{2.5}$ pollution levels between three different types of site characteristics: (1) densely populated area, (2) thinly populated area, and (3) traffic roadside. Moreover, to assess the temporal trends in our study, the concentration levels of $PM_{2.5}$ were also compared between weekdays and weekends and between early in the afternoon and evening. The average concentration of $PM_{2.5}$ from densely and thinly populated areas were measured as $36.0{\pm}13.1$ and $32.3{\pm}11.2{\mu}g/m^3$, respectively. If the results are compared between different time bands, there were apparent differences between weekdays ($29.6{\pm}10.8{\mu}g/m^3$) and weekends ($36.9{\pm}12.1{\mu}g/m^3$). Such difference was also evident between noon ($27.8{\pm}5.8{\mu}g/m^3$) and evening ($38.3{\pm}13.7{\mu}g/m^3$). According to our research, concentration of $PM_{2.5}$ in the study area was affected more sensitively by time zone rather than the population density. The measurement data was also analyzed by drawing concentration map of $PM_{2.5}$ in the Wangsimni commercial areas based on data contouring method.

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

Size-segregated Allergenic Particles Released from Airborne Cryptomeria japonica Pollen Grains during the Yellow Sand Events within the Pollen Scattering Seasons

  • Wang, Qingyue;Gong, Xiumin;Suzuki, Miho;Lu, Senlin;Sekiguchi, Kazuhiko;Nakajima, Daisuke;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.191-198
    • /
    • 2013
  • Cryptomeria japonica pollen is the most common pollen, which are scattering during each spring season in Japan. Japanese cedar (Cryptomeria japonica) pollinosis is one of seasonal allergic rhinitis that mainly occurs in Japan. In addition, long range transportation of Yellow Sand from the East Asian continent was also found during the pollen scattering seasons in Japan. Therefore, the interaction or impact between pollen and Yellow Sand should be concerned. In this study, our objective was to investigate the airborne behaviour of Cryptomeria japonica pollen grains and its size-segregated allergenic (Cry j 1) particles as the airborne tracer of Cryptomeria japonica pollen during the Yellow Sand events. Airborne Cryptomeria japonica pollen grains and its size-segregated allergenic particles were collected at roadside of urban residential zones of Saitama city during the pollination periods from February to March in two year investigation of 2009 and 2010. The overlap of Yellow Sand events and dispersal peak of pollen grains was observed. According to the Meteorological data, we found that the peaks of airborne pollen grains appeared under higher wind speed and temperature than the previous day. It was thought that Yellow Sand events and airborne pollen counts were related to wind speed. From the investigation of the airborne behavior of the size-segregated allergen particles by determining Cry j 1 with Surface Plasmon Resonance (SPR), the higher concentrations of the allergenic Cry j 1 were detected in particle size equal to or less than $1.1{\mu}m$($PM_{1.1}$) than other particle sizes during Yellow Sand events, especially in the rainy day. We conclude that rainwater trapping Yellow Sand is one of the important factors that affect the release of allergenic pollen species of Cry j 1. Therefore, it is very important to clarify the relationships between Cryptomeria japonica pollen allergenic species and chemical contents of the Yellow Sand particles in further studies.

The Monitoring of Growth Conditions Regarding Korea Endemic Species and Natural Characteristics - Applied to Facilities Area on Highway Roadside - (한국특산식물 및 종의 자생지 특성을 고려한 식재 후 생육상태 모니터링 - 고속도로변 시설지를 대상으로 -)

  • Park, Sung-Su;Hong, Kwang-Woo;Kim, Sae-Cheon;Lee, Hyo-Yeom
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigates the environmental factors of endemic species in Korea in order to understand their ecological characteristics, and to investigate the target species of their natural habitats to find similar sites. The purpose is to restore and follow suitable growth methods for the appropriate highway facility of target species to establish a management system via monitoring. This study endeavors to restore the target species near highway facilities on the basis of monitoring data and restore sites have similar natural characteristics of the target species. After restoring the target species, a restoration strategy and management plan will be established for breeding and continuation. The restoration strategy and management plan of the target species is divided into breeding, restoring, maintaining and monitoring plans. Specially management plans include several divisions such as soil, water, non-point pollution source reduction and naturalized plants. The results of this study can be used as reference materials for the restoration of endemic Korean plants in the future of highway routes, and for systematic management measures in habitats.

The Effect of Rainfall on the Stability of Mudstone Slope in Consideration of Collapse Record (이암 절취사면의 붕괴이력을 고려한 강우침투에 따른 안정성 분석)

  • Jeon, Byeong-Chu;Lee, Su-Gon;Kim, Young-Muk;Chung, Sung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • At the mudstone slope located on the roadside of the Seokri area in Donghae-myeon, Pohang, Gyeongsangbuk-do, this study was performed to analyze the effects of rainfall on the stability of slope through seepage analysis according to the precipitation type of the mudstone slope, referring to the actual case of slope failure. For this, precise geological survey, geophysical exploration and drilling survey for the slope where the failure occurred were performed and followed by analysis of detailed soil layer. For the section where failure surface located, the durability reduction of rocks was measured through slaking/swelling tests and the permeability was measured through in-situ permeability tests for each soil layer. In addition, the change of strength parameter and process of instability were analyzed by back analysis, using Talren 97 and Slope/W programs, in the slope. By applying different precipitation conditions to the geographical conditions of the slope that had actual failure records, the slope stability was analyzed by seepage analysis according to duration of rainfall and rise of groundwater level resulting from the flow of rainfall caused by development of geological structures and the slope surface condition.

A Study on Decreasing Effects of Ultra-fine Particles (PM2.5) by Structures in a Roadside Buffer Green - A Buffer Green in Songpa-gu, Seoul - (도로변 완충녹지의 식재구조에 따른 초미세먼지(PM2.5)농도 저감효과 연구 - 서울 송파구 완충녹지를 대상으로 -)

  • Hwang, Kwang-Il;Han, Bong-Ho;Kwark, Jeong-In;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.61-75
    • /
    • 2018
  • This study aims to verify the effect of green buffers, built as urban planning facilities on the reduction of ultra-fine particulate($PM_{2.5}$) and analyze changes in ultra-fine particles by structure, green volume and planting types of wayside green buffers, thus drawing the factors that can be used when green buffers are built to reduce ultra-fine particulate based on the results. This study selected Songpa-gu, and investigated 16 sites on 5 green buffers adjacent to two of Songpa-gu's main roads, 'Yangjaedaero' and 'Songpadaero'. This study divided all the green spaces into three different types-slope type, plain type and mounding type, and analyzed the mean green volume. As a result of measuring the concentration of $PM_{2.5}$, this study found that it was $55.5{\mu}g/m^3$ on average in winter, which was a harmful level according to the integrated environmental index provided by Seoul City, saying that levels above $50{\mu}g/m^3$ may have a harmful effect on sensitive groups of people. Particularly, the concentration of $PM_{2.5}$ was $38.6{\mu}g/m^3$ on average in spring, which exceeded the mean concentration of $PM_{2.5}$ in Seoul City in 2015. The mean concentrations of $PM_{2.5}$ in every investigation spot were $46.6{\mu}g/m^3$ for sidewalks, $45.5{\mu}g/m^3$ for green spaces and $42.9{\mu}g/m^3$ for residential areas, all of which were lower than $53.2{\mu}g/m^3$ for roads, regardless of the season. The concentration of $PM_{2.5}$ for residential areas was the lowest. In the stage of confirming the effect of green buffers, this study analyzed the correlation between the green volume of vegetation and the fluctuated rate of ultra-fine particles. As a result, it was found that the green coverage rate of trees and shrubs was related to the crown volume in every investigation spot but were mutually and complexly affected by each other. Therefore, this study judged that the greater the number of layers of shrubs that are made, the more effective it is in reducing the concentration of $PM_{2.5}$. As for seasonal characteristics, this study analyzed the correlation between the concentration of $PM_{2.5}$ for residential areas in winter and the green coverage rate of each green space type. As a result, this study found that there was a negative correlation showing that the higher the shrub green coverage rate is, the lower the concentration value becomes in all the slope-type, plain-type and mounding-type green spaces. This study confirmed that the number of tree rows and the number of shrub layers have negative correlations with the fluctuated concentration rate of $PM_{2.5}$. Especially, it was judged that the shrub green volume has greater effect than any other factor, and each green space type shows a negative correlation with the shrub coverage rate in winter.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.