• Title/Summary/Keyword: Urban aerosol particle

Search Result 52, Processing Time 0.025 seconds

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.

Single Particle Analysis of Atmospheric Aerosol Particles Collected in Seoul, 2001, Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z Particle Electron Probe X-ray Microanalysis를 이용한 2001년 서울시 대기 중 입자상 물질 분석)

  • Koo Hee Joon;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.823-832
    • /
    • 2004
  • Atmospheric aerosol particles collected in Seoul on four single days, each in every seasons of 2001, were characterized and classified on the basis of their chemical species using low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA). Low-Z particle EPMA technique can analyze both the size and the chemical species of individual aerosol particles of micrometer size and provide detailed information on the size distribution of each chemical species. The major chemical species observed in Seoul aerosol were aluminosilicate, silicon dioxide, calcium carbonate, organic, carbon-rich, marine originated, and ammonium sulfate particles, etc. The soil originated species, such as aluminosilicate, silicon dioxide, and calcium carbonate were the most popular in the coarse fraction, meanwhile, carbonaceous and ammonium sulfate were the dominant species found in the fine fraction. Marine originated species such as sodium nitrate was frequently encountered, up to 30% of the analyzed aerosol particles.

Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter (서울지역 겨울철 대기 에어로졸의 수 농도 및 산란계수 분석)

  • Lee, Hyun-Hye;Kim, Jin Young;Lee, Seung-Bok;Bae, Gwi-Nam;Yum, Seong Soo
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.91-103
    • /
    • 2010
  • Size-segregated number concentration and scattering coefficient of urban aerosols were measured using an SMPS (scanning mobility particle sizer) and a nephelometer, respectively in Seoul, Korea, during the winter season of 2003. The average number concentrations of ultrafine particles (20~100 nm) and accumulation mode particles (100~600 nm) were $2,170\;particles\;cm^{-3}$ and $1,521\;particles\;cm^{-3}$, respectively. The scattering coefficient at the wavelength of 550 nm ranged from $62.6Mm^{-1}$ to $330.1Mm^{-1}$ and average value was $163.4Mm^{-1}$. The peak concentrations of ultrafine particles and accumulation mode particles were simultaneously recorded between 6:00 and 9:00 A.M., indicating the effect of vehicle emissions which are major air pollution sources in the urban atmosphere. On average, the number concentration of ultrafine particles was 1.4 times higher than that of accumulation mode particles, although it was a little higher during the morning peak time. The variation of aerosol scattering coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.g coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.

Characteristics of Urban Aerosol Number Size Distribution in Seoul during the Winter Season of 2001 (2001년 겨울철 서울 대기 에어로졸의 입경별 수 농도 특성)

  • 배귀남;김민철;임득용;문길주;백남준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.167-177
    • /
    • 2003
  • The number size distribution of urban aerosols ranging from 0.02 to 20 ${\mu}{\textrm}{m}$ in diameter was measured by using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer spectrometer (APS) at Seoul from November 30,2001 to January 14, 2002. The gaseous species such as CO, NO, NO$_2$, and $O_3$ were also continuously monitored. The daily average concentration of urban aerosols sorted into three groups (0.02~0.1 ${\mu}{\textrm}{m}$, 0.1~1 ${\mu}{\textrm}{m}$ and 1~10 ${\mu}{\textrm}{m}$) and the typical number, surface, and volume distributions of urban aerosols were discussed in this paper. The weekly variation of aerosol concentration was compared with those of gaseous concentrations. relative humidity, and visibility. The results showed that the particle number concentration seemed to increase in the morning and the number concentration of fine particles less than 1 fm in diameter seemed to increase when the concentrations of CO, NO, and NO$_2$ were high. The number concentration of fine particles was relatively high when the relative humidity was greater than 70% during the increasing period of relative humidity. The visibility was weakly correlated with the concentration of aerosols ranging 0.1 to 1 ${\mu}{\textrm}{m}$, and the number size distribution for high visibility episode was apparently different from that for low visibility episode.

Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter (겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자)

  • Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan (부산 도심지에서 측정된 에어로졸 농도의 물리적 특성)

  • Kim, Yun-Jong;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.

Performance Characteristics of Louver Dust Collectors (루버 집진기의 성능특성)

  • Woo, Sang-Hee;Kim, Jong Bum;Park, Tong-Il;Yook, Se-Jin;Kwon, Soon Bark;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • A large amount of wear dust generated during train operation is a major dust source in urban railway tunnels. To check possibility of a louver dust collector for the removal of dust in the railway tunnel, five louver dust collector models were designed and their performance was tested in a wind tunnel. JIS Z 8901 Class 8 dust was used as a test dust. Pressure drop and particle collection efficiency were evaluated with the face velocity ranging from 1 m/s to 4 m/s. At this low velocity range, particle collection efficiency of the louver dust collector was found to be insensitive to air velocity and design parameters. Pressure drop was under 40 Pa, and $PM_{10}$ and $PM_{2.5}$ collection efficiencies were approximately 50% and 30%, respectively.

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Characteristics of spatial distribution of ultrafine particle number concentration on the roads of Nowon-gu, Seoul (서울시 노원구 도로상 극미세입자 오염도 공간분포 특징)

  • Lee, Seung-Bok;Lee, Dong-Hun;Lee, Seung Jae;Jin, Hyoun-Cher;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • The spatial distributions of air pollutants, in particular, ultrafine particles near traffic congestion roads at urban areas need to reduce human exposure levels for protecting public health. In this study, the number concentrations of ultrafine particles larger than 5 nm were measured every second during driving on the major roads of Nowon-gu, Seoul for 1.6 h using a mobile emission laboratory on October 5, 2010. The ultrafine particle number concentrations ranged from 7,009 to $265,600particles/cm^3$ with an average of $55,570particles/cm^3$, and these levels were comparable to concentrations of ultrafine particles larger than 3 or 7 nm on the arterial roads at urban areas in Los Angeles, USA and Zurich, Switzerland. It was frequently observed that the ultrafine particle number increased rapidly when vehicle speed was accelerated and it decreased sharply when vehicle speed was decelerated. The high peak events of ultrafine particle concentration larger than $200,000particles/cm^3$ were observed seven times during the measurement period. From the three repeated measurements during the short period of 50 min, it was concluded that the ultrafine particle number concentration on the road was significantly time-dependent. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban.