• Title/Summary/Keyword: Urban Small Stream Management

Search Result 18, Processing Time 0.021 seconds

Water Quality Management Plan through Mass Balance at Small Urban Stream (중.소 도시하천의 물질수지를 통한 수질관리 방안 도출)

  • Oh, Jong-Min;Shin, Dong-Hwan;Choi, I-Song
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.51-56
    • /
    • 2004
  • In this study, the variation of water quality in Osan stream was investigated through continuous monitoring, and mass balance and metabolism occurred into water body were estimated to set up effective management plan for water quality of small urban stream. From the results of continuos investigation of water quality in Osan stream, the things written as follows must be previously done to improve water quality of main stream. Firstly, it need that effective management plan for tributaries must be set up to improve the water quality in main stream. Secondly, the counter plan for re-eruption of pollutants from sediment in main-stream is required to prevent inner pollution. In this study, we showed that small urban stream can be managed effectively by simple investigation to prevent deterioration of water quality. Therefore continuous monitoring for water quality in stream is important to improve water quality, furthermore matter cycle and mass balance happening in the stream environment must be correctly estimated to make up healthy stream environment.

An Analytical Study of Foreign Researches and Examples on Ecological Restoration for the Small Stream (샛강 생태복원을 위한 해외 사례 연구의 고찰)

  • Kwon, Tae-Ho;Park, Jae-Hyeon;Kim, Dong-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.26-37
    • /
    • 2004
  • Most domestic small rivers and streams due to industrialization and urbanization have managed by concrete structures. The environmental functions of the river and stream are disappearing and urban streams play only the role of drainage systems. Also, the researches to restore natural streams are something yet to develop and not established the restoration for ecological functions of a small stream. Therefore the researches are required to develop ecological engineering system for watershed management system to handle various pollutants with restoration for ecological functions of a small stream. To develop this, the ecological engineering system for watershed management system could be developed with ecological conservation. In addition, ecological engineering system for watershed management system should be prior to conserve the habitat of biological resources and water conservation and applied to the original shape of streams. Also, it should be designed to restore the micro-topography of stream, the habitat of plant population in watershed. It is needed to develop the integrated researches to restore a small stream ecosystem.

Identification of Urban Stream Sandbar Change After Concentrated Storm during Summer (집중호우 후 도시 자연형하천의 사주변화 파악)

  • Kim, Jae-Cheol;Lee, Sang-Hwa;Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.162-167
    • /
    • 2006
  • The urban stream includes the channel and sandbars. The sandbar plays a key role in the riparian ecosystem. For birds and insects the sandbar offers a small strip of habitat and fish and other fauna feed in the boundary of sandbar where eddies occur. So, it is important habitat and source for the flow of energy, matter and organisms through the landscape and act as ecotone between the terrestrial and stream corridors. However, the sandbar changes continuously by the natural process. Thus, it is necessary to measure the shape and area of the sandbar accurately for the efficient urban stream management for the amenity of urban residents and stream protection. The study site is Yangjae Stream where the first natural-style urban stream restoration projected was impelemented by the support of Ministry of Education in Korea. The measurement was taken by the beacon Differential Global Positioning System (DGPS) and the data were stored and analyzed using ArcView Geographic Information System (GIS) program. Therefore, the purpose of this study is to measure the change of sandbars in the urban stream after concentrated stormwater during summer.

Analysis of the Effects of Sewer System on Urban Stream using SWMM based on GIS (GIS 기반의 SWMM 모형을 이용한 하수도시스템 선정에 따른 도시하천 수질개선효과의 정량적 분석)

  • Jang, Ju-Hyoung;Park, Hae-Sik;Park, Chung-Kil
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.982-990
    • /
    • 2006
  • Generally CSOs (Combined Sewer Overflows) are regarded as one of the most serious nonpoint pollution source in the urban watershed, Particularly, the water quality of the Oncheon stream is seriously affected by CSOs because the capacity of interception sewer system connected to the Suyoung wastewater treatment plant is too small to intercept most storm water discharges. The objective of this study is to evaluate the effect of nonpoint source on an urban stream with regards to combined sewer system and separate sewer system using GIS (Geographic Information System) and SWMM (Storm Water Management Model), and to provide an insight for the management of urban stream water quality. In order to consider the effect of CSOs on the receiving water quality, the flow divider element in SWMM was applied. The model calibration and verification were performed by the measured data of quantity and quality on the Oncheon stream. The quantity data acquired from the Suyoung wastewater treatment plant were also used for this procedure. In case of separate sewer system, the modeling results showed the increased tendency in streamflow compared with the combined system in dry weather, In addition, the water quality is remarkably improved in rainfall events at the separate condition. The results imply that the construction of separate sewer system should be taken into first consideration to restore the quality and quantity of water in urban streams.

Application of QUAL2K Model for Daejeon Tandongcheon, A Small Urban Stream and Evaluation of Terrace Land Constructed Wetland (도시 소하천, 대전 탄동천, 수질개선 대안 수립을 위한 QUAL2K 수질모델 구축과 제외지 인공습지공법 적용 효율 평가)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.192-199
    • /
    • 2013
  • The Tandong-cheon stream is a 7.4 km long small urban stream that passes through Daeduk Science Town in Daejeon Korea. Despite the stream has great potential as an educational and recreational site due to its central location in the science town and science museums nearby, environmental aspect especially for water quality has not been evaluated properly. Through field survey, major pollution sources of the stream were identified and effect of water quality improvement alternatives were evaluated using a QUAL2K water quality model for the stream. The study indicated that controlling major pollution sources of the stream alone may not be sufficient for reaching the water quality target. Therefore, additional pollution control methods are necessary. We applied the developed model to evaluate the effects of a constructed wetland on the terrace land, and analyzed whether the water quality target can be met at the outlet of the stream. It is expected that this study would provide a good reference for environmentally sound management of small urban streams in Korea.

Parameter Sensitivity Analysis of SWAT Model for Prediction of Pollutants Fate in Joman River Basin (조만강 유역의 오염물질 거동 예측을 위한 SWAT 모형의 매개변수 민감도 분석)

  • Kang, Deok-Ho;Kim, Tae-Won;Kim, Young-Do;Kwon, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.787-790
    • /
    • 2008
  • The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.

  • PDF

Application of LID Methods for Sustainable Management of Small Urban Stream Using SWMM (SWMM 모델을 이용한 지속 가능한 도시 소하천 관리를 위한 LID 기법의 적용 방안 연구)

  • Han, Yanghui;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.691-697
    • /
    • 2014
  • Though the upper stream basin area of Gwanpyung-Cheon in Daejeon, Korea is protected as Green Belt Zone, the stream is under constant environmental pressure due to current agricultural practices and infrastructure development in its basin area. To develop appropriate integrated water resources management plan for the stream, it is necessary to consider not only water quality problems but also water quantity aspect. In this study, Storm Water Management Model (SWMM) was calibrated and validated with sets of field measurements to predict for future water flow and water quality conditions for any rainfall event. While flow modeling results showed good agreement by showing correlation coefficient is greater than 0.9, water quality modeling results showed relatively less accurate levels of agreements with correlation coefficient between 0.67 and 0.87. Hypothetical basin development scenarios were developed to compare effect on stream water quality and quantity when Low Impact Development (LID) technologies are applied in the basin. The results of this study can be used effectively in decision making processes of urban development Gwanpyung-Cheon area by comparing basin management alternatives such as LID methods.

Seasonal Changes in Structure and Landscape of Urban Stream Corridor - In the Case of Gongji Stream in Chuncheon- (도시하천 하도구조와 경관의 계절변화 - 춘천시 공지천을 중심으로 -)

  • Jo Hyun-Kil;Han Gab-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.739-748
    • /
    • 2005
  • The purpose of this study is to analyze seasonal changes in structure and landscape of Gongji stream corridor in Chuncheon, and to suggest some guidelines to contribute to creating a desirable close-to- nature stream. The study seasonally surveyed floodplain and revetment conditions, channel micro-topography, streamflow level and velocity, and vegetational cover. Flooding, water level, and vegetation were major factors of affecting seasonal changes in streambed structure and stream landscape. Small sand bars and islands were considerably disturbed by flooding and water level change. However, large islands and sand bars in the upper and middle section of the study stream remained or reappeared even after flooding. Flooding also tended to repeat channel sedimentation at the same spot. Controlling water volume of the Euiam Lake, which is adjacent to the study stream, caused higher water level downstream in the dry seasons. The majority of vegetation in sand bars and islands was washed away by the floods. Vehicle passing, crop cultivation, and ball game were other elements which disturbed vegetation in the floodplain. Creating a close-to-nature stream should reflect micro-topographical changes of channel by flooding, prevent improper vehicle entry and human use, and remove concrete material in the revetment and floodplain.

Restoration Method of Small Stream using Artificial Step-pool Sequences (계단상 하상구조를 이용한 계류복원 방안)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Kyoung-Nam;Park, Chong-Min;Marutani, Tomomi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.11-23
    • /
    • 2011
  • Mountain streams, which are major components of an entire river network, play an important role as the source of water, sediment, coarse and fine organic matter, and nutrients for lowland rivers. Therefore, dynamics and downstream linkages of each compartment of the mountain stream can be essential for watershed management in catchment scale. The dynamics and downstream linkages are understood as a development of step-pool sequences along a river course. Recently, stream restoration after flooding event often employ the development of step-pool sequences in the world. In this paper, we 1) examined the geomorphic characteristics and the role of step-pool sequences in steep mountain streams by reviewing the results of past studies, and 2) introduced the case studies of stream restoration using step-pool sequences, and finally 3) addressed design methods considering geometry and stability of artificial step-pool sequences for stream restoration. Step-pool sequences play an important role not only as roughness with energy dissipation but also as heterogeneity of stream feature for aquatic habitat. Step-pool sequences, even if they are constructed artificially along a stream, may be effective for small stream restoration considering eco-friendly torrent controls. So far the artificial step-pool sequences were employed for mountainous streams, but those would be applied to urban stream.

Distribution of naturalized plants in historic sites and urban park of Gyeongju-si, South Korea (경주시 주요 사적지 및 도시공원의 귀화식물 분포)

  • Song, Imgeun;Park, Seonjoo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.144-154
    • /
    • 2019
  • The flora of naturalized plants in historic sites, urban parks and stream of Gyeongju-si, South Korea were summarized as 84 taxa including 21 families, 59 genera, 78 species, 1 subspecies, and 5 varieties. Direct investigation was conducted in a historic site with 68 taxa, a neighborhood park with 43 taxa, a stream with 59 taxa and a small park with 42 taxa at 86 sites. Among them, 31.0% (Naturalized Degree (ND) 3) was common but not abundant, 29.8% (ND 5) was common and an abundant plant, 20.2% (ND 2) was local and not an abundant plant. 7 taxa such as Lactuca scariola, Symphyotrichum pilosum, Rumex acetosella were invasive alien species. Lactuca scariola was the most abundant with 41.9%, Symphyotrichum pilosum was more abundant around stream with 34.9%, and Rumex acetosella was abundant on historic sites or small park with 25.6% in all the surveyed sites. To prevent spread of invasive alien species, monitoring may be required, especially, in early settlement stage. A proper management plan needs to be incorporated through physical removal of those plants, substitution of soil and so on.