• Title/Summary/Keyword: Urban Higher Temperature

Search Result 232, Processing Time 0.026 seconds

Detection of Heat Change in Urban Center Using Landsat Imagery (Landsat 영상을 이용한 도심의 열변화 탐지)

  • Kang, Joon-Mook;Ka, Myung-Seok;Lee, Sung-Soon;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Recently, developed countries have continuously been trying to recognize many issues about heat island in urban area and to make up countermeasures for them. This research is designed to extract change of land cover in the area under condition of land development with satellite images and to analyze its effect on the heat change in there. Heat change upon change of land cover in daejeon was analyzed with the four Landsat satellite images taken in April 1985, August 1994, May 2001, and May 2009. In order to measure the temperature on the surface in the city, the land surface temperature was produced with Landsat TM Band 6. Heat change is to detected with it. As a result, The urban area has been increased up to 23.59 percent. On the other hand, the forest area has been decreased up to 27.91%. Due to the urbanization, the temperature on the surface in urban center was higher than surrounding area. In that case, the temperature of urban center area was higher 2.4 to $5.7^{\circ}C$ compared with the forest area.

Analysis of the Relationship Between Land Cover and Land Surface Temperature at Cheongju Region Using Landsat Images in Summer Day (LANDSAT영상을 이용한 여름철 청주지역의 토지피복과 지표면온도와의 관계 분석)

  • Park, Jong-Hwa;Kim, Jin-Soo;Na, Sang-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.39-48
    • /
    • 2006
  • The objective of this research was to find an indirect method to estimate land surface temperature (LST) efficiently, using Landsat images. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect is widely acknowledged. However, quantitative and regional assessment of such effect has not been performed. Thermal remote sensing has been used over urban areas to assess the ATC effect, Thermal Island Effect(TIE), and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $44km^{2}$ study area in Cheongiu, Korea. The results show that the ATC is a function of paddy area percentage in Landsat pixels. Landsat pixels with higher paddy area percentage have much more cooling effect. The use of satellite data may contribute to a globally consistent method for analysis of ATC effect.

Prediction of Future Climate Change Using an Urban Growth Model in the Seoul Metropolitan Area (도시성장모델을 적용한 수도권 미래 기후변화 예측)

  • Kim, Hyun-Su;Jeong, Ju-Hee;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.367-379
    • /
    • 2010
  • Future climate changes over the Seoul metropolitan area (SMA) were predicted by the Weather Research and Forecasting (WRF) model using future land-use data from the urban growth model (SLEUTH) and forecast fields from ECHAM5/MPI-OM1 GCM (IPCC scenario A1B). Simulations from the SLEUTH model with GIS information (slope, urban, hill-shade, etc.) derived from the water management information system (WAMIS) and the intelligent transportation systems-standard nodes link (ITS-SNL) showed that considerable increase by 17.1% in the fraction of urban areas (FUA) was found within the SMA in 2020. To identify the effects of the urban growth on the temperature and wind variations in the future, WRF simulations by considering urban growth were performed for two seasons (summer and winter) in 2020s (2018~2022) and they were compared with those in the present (2003~2007). Comparisons of model results showed that significant changes in surface temperature (2-meter) were found in an area with high urban growth. On average in model domain, positive increases of $0.31^{\circ}C$ and $0.10^{\circ}C$ were predicted during summer and winter, respectively. These were higher than contributions forced by climate changes. The changes in surface temperature, however, were very small expect for some areas. This results suggested that surface temperature in metropolitan areas like the SMA can be significantly increased only by the urban growth during several decades.

Climate Change and Urban Air Temperature Increase in Korean Peninsula (기후변화와 한반도 도시지역의 기온 증가)

  • Oh, Sung-Nam;Ju, Ok-Jung;Moon, Yung-Su;Lee, Kyoo-Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.169-177
    • /
    • 2010
  • One of the most obvious climatic manifestations of urbanization in Korea is a trend towards higher air temperature. The trends of long-term annual temperature generally well describe the warming of urban areas. The increase of air temperature in urban area has been observed to the present since the meteorological observations in Korea began. The objective of this study is to explore the actual increase and the regional long-term trends of air temperature attributed to urbanization in the Korean Peninsula. Therefore, temperatures of the selected urban areas were compared with that of the surrounding rural areas, with the results varying by the application of the estimates of each region. The second objective is to separate the long-term trend of surface air temperature of global warming from urbanization and to find the actual temperature increase from urbanization in Korean peninsula. For the data analysis, daily air temperatures observed by the Korea Meteorological Administration (KMA) during between from 1961 and 2005 were used at five rural sites and cities. The re-analyzed surface air temperatures by the National Centers for Environmental Prediction (NCEP) was also carried out to compare the result from the observed air temperature in the Korean climate domain. In this study, the urban areas in Korea showed high increase rate of air temperature with $0.4^{\circ}C$ per decade during past 50 year period, while rural sites as Chupungryung with the $0.2^{\circ}C$ decadal increase rate. The analyses reflect that the urban area shows the high rate of temperature increase with $1.39^{\circ}C$ of regression value at the urban area, Seoul, and $0.43^{\circ}C$ at the rural site, Chupungnyeong during the period of 30 years. The temperature increas due to the urbanization only showed the increase range between $0.44^{\circ}C$ and $0.86^{\circ}C$, and the observed decrease in diurnal temperature range at five urban areas during the 30 years period.

Observation of Long and Short Wave Radiation During Summer Season in Daegu Area (대구지역의 하절기 장.단파복사 관측)

  • Oh, Ho-Yeop;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.134-139
    • /
    • 2012
  • This study observed downward long and short-wave radiant environment with selecting 4 areas which have different height in downtown and 1 suburban area to figure out the characteristic of radiant environment in each altitude. The purpose of this study is to collect the preliminary data for interpreting urban thermal environment in summer season by analyzing thermal characteristic of atmosphere in the upper of downtown. The results of this study are as follows. 1) The higher altitude has the lower temperature, and temperature difference was more huge in day time than night time. 2) The short wave radiation according to altitude was higher as altitude was high. 3) Generally, the higher altitude has the lower air temperature, and also the higher altitude has the lower downward long wave radiation by the atmospheric radiation. 4) The ratio short wave radiation of long wave radiation was lower as altitude was high. And the urbanization effect was higher as the ratio was low.

  • PDF

A Study on Indoor Radon Concentrations in Urban Area (도시 일부지역에서의 실내 라돈농도에 관한 연구)

  • 김순애;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

Impacts of Different Urban Surfaces on Summer Thermal Performance

  • Jo, Hyun-Kil;Wu, Qian
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.819-826
    • /
    • 2015
  • This study measured temperatures and albedos of urban surfaces for different colors and materials during summer, and calculated the energy budget over different urban surfaces to find out the thermal performance affecting the heat built-up. The study selected six surface colors and 13 materials common in urban landscape. Their surface temperatures (Ts) and albedos were measured at a given time interval in the daytime from June to August. Average Ts over summer season for asphalt-colored brick was $4.0^{\circ}C$ higher than that for light red-colored one and $9.7^{\circ}C$ higher than that for white-colored one. The Ts for artificial surface materials of asphalt paving, brown brick wall, and green concrete wall was $6.0^{\circ}C$ higher than that for natural and semi-natural ones of grass, grassy block, and planted concrete wall. There was the greatest difference of $16.3^{\circ}C$ at midafternoon in the Ts between asphalt paving and planted concrete wall. Average albedo over summer season of surface materials ranged from 0.08 for asphalt paving to 0.67 for white concrete wall. This difference in the albedo was associated with a maximum of $15.7^{\circ}C$ difference at midafternoon in the Ts. Increasing the albedo by 0.1 (from 0.22 to 0.32) reduced the Ts by about $1.3^{\circ}C$. Average storage heat at midday by natural and semi-natural surfaces of grass and grassy block was about 10% lower than that by artificial ones of asphalt, light-red brick, and concrete. Reflected radiation, which ultimately contributes to heating the urban atmosphere, was 3.7 times greater for light-red brick and concrete surfaces than for asphalt surface. Thus, surfaces with in-between tone and color are more effective than dark- or white-colored ones, and natural or semi-natural surfaces are much greater than artificial ones in improving the urban thermal environment. This study provides new information on correlation between Ts and air temperature, relationship between albedo and Ts, and the energy budget.

The use of Gradient Analysis in Spatial Understanding of Urbanization (단계적 변화 분석(gradient analysis)을 적용한 도시화의 공간적 평가)

  • Lee, Dong-Kun;Choe, Hye-Yeong
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.357-366
    • /
    • 2008
  • It is certain that urbanization has transformed the ecological consequences severely, but urban ecosystem is not fully understood yet. Urban growth is not like a static form and it spreads spatially and temporally. Therefore in studying urban ecosystem, it is important to relate the spatial pattern of urbanization to ecological processes. Using gradient analysis, we attempted to quantify the urbanization's spatial impacts in Daejeon-city and Cheonan-city, Chungcheong-province, Korea. Because of Multifunctional Administrative City Planning (MACP), a lot of development projects are planned in Chungcheong-province, Korea. It's important to study about original cities' patterns and impacts. These results can be adopted to future city planning. So several measures such as fragmentation, vegetation index, surface temperature, population density, and income rate were computed along a 75km long and 3km wide transect. The results showed that Daejeon-city has a wider urban center, lower vegetation indexes, and higher surface temperature than Cheonan-city. Therefore in the perspective of urban environments and sustainable urbanism, it seems that Cheonan-city is better than Daejeon-city. The changes along the transect have important ecological implications, and quantifying the urbanization gradient is an important step in understanding urban ecology.

Analyzing the Cooling Effect of Urban Green Areas by Using the Multiple Observation Network in the Seonjeongneung Region of Seoul, Korea (최근 2년간 서울 선정릉 지역의 복합센서 관측망을 활용한 녹지 냉각효과 분석)

  • Kim, Geun-Hoi;Lee, Young-Gon;Lee, Dae-Geun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1475-1484
    • /
    • 2016
  • To analyze the cooling effect of urban green areas, we conducted micrometeorological measurements in these areas and their surroundings in Seoul, Korea. From the average hourly temperature measurements through each month for the last two years (March 2013 to February 2015), we found that the maximum temperature difference between urban and green areas was about $2.9^{\circ}C$ at 16:00 LST in summer, and the minimum was about $1.7^{\circ}C$ at 22:00 LST in winter. In summer, the temperature difference was the largest during the day, rather than at night, due mainly to shading by the tree canopy. The specific humidity difference between the two areas was about $1.5g\;kg^{-1}$ in summer, and this decreased in the winter. The specific humidity difference between urban and green areas in summer is relatively large during the day, due to the higher evapotranspiration level of biologically active plants.

Comparison of the Thermal Environment in the Downtown Location and the Outskirt Site base on the Field Observations in the Summer (미기상 관측을 통한 하절기 도심과 외곽의 열환경 비교)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.94-101
    • /
    • 2009
  • This study which is the fundamental work to investigate the property of urban climate compared the property of thermal environment in the downtown location and the outskirt site based on the field observation in the summer. We analysed thermal environment in the downtown location mainly by distributional characteristics during day and night with changes and correlation analysis of the air temperature, the globe temperature and the surface temperature through the simultaneous observation of the property of thermal environment at two places in real time. The summary of finding in this study is as follows. (1)It is observed on the day chosen by sample that diurnal air temperature range in the downtown location is $22.3{\sim}34.9^{\circ}C$, and diurnal air temperature range in the Outskirt site is $20.0{\sim}34.3^{\circ}C$, so, we found that the diurnal air temperature range in the outskirt site is $1.7^{\circ}C$ higher than in the downtown location. (2)In comparison of the globe temperature after sunset, we found the change of more sudden temperature drops in the outskirt site than in the downtown location. (3)It is observed on the days chosen by sample that the average of globe temperature range is $1.1^{\circ}C$, the average of surface temperature range is $1.0^{\circ}C$, and air temperature range is $2.0^{\circ}C$, thus, the we found that the average of air temperature is $1.0^{\circ}C$ higher than globe temperature and the surface temperature. (4)After the consideration of air temperature and globe temperature distribution, the highest temperature reaching time of globe temperature is one hour earlier than air temperature in the downtown location, on the other hand, although the highest temperature reaching time of globe temperature in the outskirt sites is one hour later than in the downtown location, the timelag found in the downtown location was not found in the outskirt site.