• Title/Summary/Keyword: Urban Heat island effect

Search Result 172, Processing Time 0.026 seconds

Sodium titanate as an infrared reflective material for cool roof application

  • Ullah, Mahboob;Kim, Hee Jung;Heo, Jae Gu;Roh, Dong Kyu;Kim, Dae-Sung
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.86-91
    • /
    • 2019
  • A solid-state route was used to prepare sodium titanium oxide (NTO, Na2Ti3O7) as a solar heat protecting material with an impressive solar reflectance (TSR = 94.3%) using a high refractive index rutile TiO2. The solar reflectance of the synthesized NTO was measured using UV-Vis-NIR spectrophotometer. Solar reflectance property of the synthesized compound depends on the calcination temperature. The solar reflectance property of the synthesized NTO powder was compared with commercial rutile TiO2. The compound synthesized at 900 ℃ for 24 hrs had remarkable solar reflectance 94.3% than that calcined below 900 ℃. Crystalline nature, structural property, morphology and optical properties of NTO powders were characterized and analyzed using XRD, FE-SEM, EDS and UV-Vis-NIR spectrophotometer. From the results, we guessed that NTO would be a suitable "solar heat protecting candidate" for energy-saving applications in coating industries.

A Study of Activating Urban Square's Ecological Soundness - Focusing on Gyodong Square in the City of Gangneung - (도심광장의 생태적건전성 활성화방안 - 강릉시 교동 광장을 사례로 -)

  • Kim, Ji-Youn;Kang, Seon-Hong;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.837-846
    • /
    • 2017
  • This study aimed to investigate the dilapidated Fine View Square located in the city of Gangneung and analyze problems for building it into a sustainable space under an effective management plan. Further to creating an ecological base for restoring the natural circulation, a restorative method for the damaged area, a spatial assignment by the UNESCO's Man and Biosphere Programme (MAB), and an urban ecological park, we not only wanted to provide an environment that is citizen friendly, but also a practical and realizable project to connect with the various methods and programs mentioned above, while utilizing the Ministry of the Environment 's ecosystem conservation fund. In conclusion, we found that it would be possible to contribute to building an urban ecological park the Ministry of Environment proposed while restoring the lost natural circulation in Gyodong Square in the city of Gangneung and ecological soundness of the city along with the reduced heat island effect and the increased biological diversity and Ecological Soundness.

Temperature Change Analysis for Land Use Zoning Using Landsat Satellite Imagery (Landsat위성영상에 의한 용도지역 온도변화분석)

  • Jung, Gil-Sub;Koo, Seul;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • The land use has been changed artificially and caused the result of temperature increase of city compared with the outside of city or region of park and forest. The purpose of this research is to analyze the change of the urban surface temperature with land use zoning in Jinju using Landsat TM/$ETM^+$ imagery and to provide the correlation between NDVI(Normalized Difference Vegetation Index) and urban surface temperature change. The results presented that the spatial distribution of urban surface temperature was depending on the change of NDVI values on land use zoning. Considering to the average temperature by land use zoning, industrial area was the highest temperature but green area was the lowest temperature. Also as a result of comparing the correlation between surface temperature and NDVI, the green and residential area had higher correlation values than the commercial and industrial area. These results will be played a part as one of the major factors for implementing the sustainable urban planning considering the urban heat island effect problem.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF

Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100 (기후변화에 따른 벚꽃 개화일의 시공간 변이)

  • Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.

A Multiplex Housing Energy Conservation Strategy through Combining Insulation Standard Based Green Roof Systems and Passive Design Elements

  • Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Recently, the coverage of urban forests has been rapidly decreasing as the cities are created and expanding. Consequently, there arise urban problems such as heat island effect, urban flooding, urban desertification and so on. In this context, green roof systems is considered to be an efficient alternative to deal with these problems. However, it is difficult to apply green roof to new buildings since the majority of the buildings in cities are already constructed and the demand for new building constructions is not high enough. Therefore, it should be considered to apply green roof system to existing buildings for resolving various problems. This study evaluates heating and cooling energy consumption based on the combination of passive design factors such as wall, roof, window insulation in addition to a green roof system applied to an existing house by using an energy simulation program. Total 8 potential improvement cases are developed. Each case is applied to the same house with different insulation standard for simulations. Through the analysis of the simulated cases with the chosen test house, it is confirmed that heating energy consumption decreases as improvement cases are applied, but cooling energy consumption is relatively not much affected by each improvement case. In addition, when each improvement case is applied to already highly insulated house, the effect of thermal energy improvement decreases while the same improvement that is applied to the case with low insulated house tends to yield higher improvement rate.

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.

Effect of an Urban Thermal Environment on the Air Quality in Two Cities

  • Lee, Kwi-Ok;Lee, Hwa-Woon;Lee, Hyun-Ju;Park, Jong-Kil;Jung, Woo-Sik
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.29-40
    • /
    • 2011
  • In this study, the effects of an urban thermal environment on air quality were investigated using hourly surface weather observation data and air quality data over six summers from 2000 to 2005 in two cities on the Korean Peninsula. One, the city of Daegu, is representative of basin topography and the other, the city of Busan, represents a coastal area. It is known that the characteristics of an urban thermal environment are represented as an "urban heat island". Here, we focus on the nighttime urban thermal environment, which is called a "tropical night", during the summer. On tropical nights in Busan, the temperature and cloud cover levels were higher than on non-tropical nights. Wind speed did not appear to make a difference even on a tropical night. However, the frequency of southwestern winds from the sea was higher during tropical nights. The prevailing southwest winds in all areas meant an inflow of air from the sea. So at most of the air quality stations, the ozone concentration during tropical nights was lower than during non-tropical nights. In Daegu, the tropical nights had higher temperatures and cloud covers. Despite these higher temperatures, the ozone concentration during the tropical nights was lower than that on non-tropical nights at most of the air quality stations. This feature was caused by low irradiance, which in turn caused an increased cloud cover. Wind speed was stronger during the tropical nights and dispersed the air pollutants. These meteorological characteristics of the tropical nights reduced ozone concentrations in the Daegu Basin.

The Analysis of Sedum Suitable for the Effect of Modulability the Temperature of the Rooftop Greening (옥상녹화의 온도조절효과에 적합한 세덤류 분석)

  • Lee, Bitnara;Kim, Ye-Seul;Lee, Eun-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2015
  • Rooftop greening is the alternative of urban heat island. The purpose of this study is selecting Sedum to the effect of temperature reduction of the rooftop greening. Since the state of growth is excellent, Sedum kamtschaticum, Sedum takesimense and Sedum middendorffianum surveyed as coverage. It was investigated that there is the effect of reducing the temperature. The effect of temperature reduction of Sedum counted compound was found to be associated with state of growth. When you construct a rooftop greening, planting Sedum kamtschaticum, Sedum takesimense and Sedum middendorffianum is helpful to the effect of temperature reduction. Also, the ingredients various types of Sedum in order to reduce the effective temperature, it must be densified. It must demonstrate an additional effect of temperature reduction of Sedum through complementary and continuous monitoring of the future temperature monitoring method.

The Spatial Factor Analysis of Urban Heat Island Effect (도시열섬효과의 공간 요인 분석)

  • Jeong, Jong-Chul
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.97-99
    • /
    • 2008
  • 지구온난화의 문제가 다양한 분야에서 논의되고 있다. 특히 도시열성효과에 대한 문제는 도시기후변화의 측면에서 공간적인 특성을 반영하여 나타난다. 현장조사 자료와 위성자료에 의한 연구는 도시의 열 환경이 공간적으로 어떤 분포를 나타내는지 분석하고 평가하는데 중요한 요소로 연구가 이루어져왔다. 본 연구에서는 도시열성효과가 도시 내부공간의 열 환경에 대해 공간적으로 나타나는 요인을 평가하고 이의 상관성을 도시 공간분포의 범위에서 평가하였다. 연구지역인 전주시는 지난 20년 동안 도시환경의 공간 구조적 요인 보다는 도시 열 발생원에 의해 30% 이상의 영향을 받는 것으로 평가되었다. 이를 검증하기 위해 고해상도 위성자료를 활용하여 공간 요인 분석을 수행하였다.

  • PDF