• Title/Summary/Keyword: Urban Dynamics

Search Result 287, Processing Time 0.024 seconds

Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle (가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향)

  • Han, Hyung-Suk;Yim, Bong-Hyuk;Lee, Nam-Jin;Hur, Young-Chul;Kwon, Jung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

First- and Second-best Pricing in Stable Dynamic Models (안정동력학 모형에서 최선 통행료 및 차선 통행료)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.123-138
    • /
    • 2009
  • This study examined the first- and second-best pricing by stable dynamics in congested transportation networks. Stable dynamics, suggested by Nesterov and de Palma (2003), is a new model which describes and provides a stable state of congestion in urban transportation networks. The first-best pricing in user equilibrium models introduces user-equilibrium in the system-equilibrium by tolling the difference between the marginal social cost and the marginal private cost on each link. Nevertheless, the second-best pricing, which levies the toll on some, but not all, links, is relevant from the practical point of view. In comparison with the user equilibrium model, the stable dynamic model provides a solution equivalent to system-equilibrium if it is focused on link flows. Therefore the toll interval on each link, which keeps up the system-equilibrium, is more meaningful than the first-best pricing. In addition, the second-best pricing in stable dynamic models is the same as the first-best pricing since the toll interval is separately given by each link. As an effect of congestion pricing in stable dynamic models, we can remove the inefficiency of the network with inefficient Braess links by levying a toll on the Braess link. We present a numerical example applied to the network with 6 nodes and 9 links, including 2 Braess links.

A Numerical Study on the Effects of Urban Forest and Street Tree on Air Flow and Temperature (도시숲과 가로수가 대기 흐름과 기온에 미치는 영향에 관한 수치 연구)

  • Kang, Geon;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1395-1406
    • /
    • 2022
  • This study investigated the effects of the urban forest and street trees on flow and temperature distribution in the Daegu National Debt Redemption Movement Memorial Park. For this, we implemented tree-drag and tree-cooling parameterization schemes in a computational fluid dynamics (CFD) model and validated the simulated wind speeds, wind directions, and air temperatures against the measured ones. We used the wind speeds, wind directions, air temperatures predicted by the local data assimilation and prediction system (LDAPS) as the inflow boundary conditions. To investigate the flow and thermal characteristics in the presence of trees in the target area, we conducted numerical experiments in the absence and presence of trees. In the absence of trees, strong winds and monotonous flows were formed inside the park, because there were no obstacles inducing friction. The temperature was inversely proportional to the wind speed. In the presence of trees, the wind speeds(temperatures) were reduced by more than 40 (5)% inside the park with a high planting density due to the tree drag (cooling) effect, and those also affected the wind speeds and temperatures outside the park. Even near the roadside, the wind speeds and temperatures were generally reduced by the trees, but the wind speeds and air temperatures increased partly due to the change in the flow pattern caused by tree drag.

Application of GIS for the Visualization of Urban Demography in Kitakawachi Region, Japan

  • Shrestha, Sunil Babu;Taniguchi, Okinori
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • This study investigates the spatial patterns of distributed population in terms of population density, age structure, sex structure and family structure in Chou (smallest political city boundaries) of seven cities of Kitakawachi region. This displays the population dynamics of those cities from 1955 to 1995. It demonstrates how the populations of the cities are distributed with topography and with respect to the train stations. The demographic characteristics of the cities are visualized utilizing Arc View GIS capabilities with new visualizing technique in 3D environment based on data from Pasco Digital Map 2000.

  • PDF

A Study for Vehicle Dynamic Analysis and Test of Airport Railroad (공항철도 차량 동특성 해석 및 시험에 관한 연구)

  • Yang, Hee-Joo;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.188-193
    • /
    • 2007
  • Airport railroad have required maximum design speed 120km/h and wind speed 50m/s condition as design item of airport railroad vehicles. To design and manufacture the vehicle satisfying these conditions, it must carry out the dynamic behaviors analysis such as hunting stability, ride comfort derailment ratio, unloading ratio and lateral force to meet the criterion described in Urban Railroad Act. Dynamic behaviors of vehicle have carried out using the multi-body dynamics simulation program(VAMPIRE). This paper presents the evaluation methods and criterion used to verify dynamic performance of airport railroad vehicle, and show the analysis results of vehicle dynamic simulation and the test results for vibration and ride comfort measured on running performance tests. As a results, each analysis results and test results meet the criterion described in Urban Railroad Act.

  • PDF

Model Study with MM5 and CAMx in Istanbul Area during High Ozone Days

  • Anteplloglu, Umit;Inceeik, Selahattin;Topcu, Sema
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.11-14
    • /
    • 2003
  • Development pollution control strategies relies on photo-chemical transport models. These models integrate of mesoscale meteorological models with chemical moduls. In this study, the PSU/NCAR mesoscale meteorological model with CAMx is used to investigate the temporal and spatial dynamics of the photochemical air pollution in urban atmosphere of Istanbul for selected high ozone days. The ozone climatology for the selected days and model simulations are presented.

  • PDF

Analysis of Hydraulic effect on Removing Side Overflow Type Structures in Woo Ee Stream Basin (우이천 유역의 횡단 월류형 구조물 철거에 의한 수리영향 분석)

  • Moon, Young-Il;Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.687-690
    • /
    • 2008
  • Currently, Stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many reach uppermost limit. In this study, FLOW-3D using CFD(Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-\varepsilon$, RNG(Renomalized Group Theory) $k-\varepsilon$ and LES(Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the side overflow type structures at Jangwall bridge in urban stream.

  • PDF

NUMERICAL SIMULATION OF WIND-DRIVEN FIRE FLUMES

  • Kohyu Satoh;Yang, K.T.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.327-334
    • /
    • 1997
  • In many large urban-fire scenarios one of the critical issues is to attempt to protect the lives of fire fighters in helicopters deployed to flying over the fires and also the lives of people trapped in open areas downwind of the fires such as in parks. The strategies of such protection measures depend significantly on our knowledge of the size and extent of such fires as affected by the prevailing winds. In this study, the shape or profile of the fire plume typical of large urban fires, as affected by a steady unidirectional wind with or without imposing a shear flow on the fire plume, has been simulated numerically by a field model. The results show that the simulations provide realistic flame profiles and at least qualitatively, the same flame dynamics when compared to those from the experiments, and that the fire plumes are sensitive to small variations in the asymmetry of the wind shears, including the appearance of swirling flames within the fire plumes.

  • PDF

Effects of Combustor Stages on M501J Gas Turbine Combustion (M501J 가스터빈 연소기 단별 연료비율이 연소상태에 미치는 영향 고찰)

  • Yu, Won-Ju;Chung, Jin-Do
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Most of gas turbine combined cycle power plants are located in urban areas to provide peak load and district heating. However, NOx(nitrogen oxides) of exhaust gas emission from the power plants cause additional fine dust and thus it has negative impact on the urban environment. Although DLN(dry low NOx) and multi-stage combustors have been widely applied to solve this problem, they have another critical problem of damages to combustors and turbine components due to combustion dynamic pressure. In this study, the effect of different fuel ratio on NOx emission and pressure fluctuation was investigated regarding two variable conditions; combustor stages and power output on M501J gas turbine.