• Title/Summary/Keyword: Urban Disaster

Search Result 810, Processing Time 0.027 seconds

Developing an Urban Planning Model for Climate Change Adaptation

  • Kim, Jong-Kon;Rhim, Joo-Ho;Lee, Sung-Hee
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.51-53
    • /
    • 2015
  • As abnormal climate phenomena occur more frequently due to climate change, damage which results from meteorological disaster increases accordingly and its scale and variety are becoming wider. This paper draws out planning and design elements and application techniques to build cities more adaptive to climate change from urban development cases in US and Europe. An urban model is suggested, that enables built environment to be more resilient to risks caused by climate change is applicable to urban development projects in practice.

  • PDF

A Study on Developing Model for Regional Disaster Capability Assessment (지역방재성능평가를 위한 수리모형 연구)

  • Ki, Jae-Sug
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • It is a significant issue for several country including Korea, where the natural and the weather conditions are severe, to keep the safety against disasters which occur frequently every year, especially in urban region crowded with population. In order to implement suitable and effective measures against various disasters in such area, development of method for evaluation of disaster prevention performance based on various disaster risks and effective disaster damage mitigation technologies is independable. In this paper, methods for hazard evaluation, vulnerability evaluation and loss evaluation, and damage technologies are proposed targetting man-made disaster and natural one like flood, earthquake and tsunami and so on. The method proposed in this paper is based on the research of USA and Japan for man-made disaster and natural disaster. The proposed method will be developed in detail in four years during research period funded by government.

A study on Disaster Anxiety scale consideration the safety vulnerable group (안전 취약계층을 배려하는 재난 불안척도에 관한 연구)

  • Moon, Yu Mi;Han, Kyung Bo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.15-29
    • /
    • 2017
  • In changes of social environment, change of the use of land due to the change of residence type, industry and urban structure is an influential factor to safety vulnerable social group. From PTSD from disaster experience point of view, experience of disaster, damage from disaster, witness of disaster make people experience anxiety and confusion, increase the anxiety toward disaster and lead to difficulty in daily lives. As for the result of analyzing anxiety factors regarding disaster damage potential composed of 20 items of safety manager, damage potential of sink hole which recently rapidly increased was the highest, and followed by anxiety from safety damage potential of family, anxiety from phone call damage. Likewise, if the anxiety toward disaster damage potential is digitized, it contributes to setting safety management planning for disaster prevention as it visualizes the risk.

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

Exercising The Traditional Four-Step Transportation Model Using Simplified Transport Network of Mandalay City in Myanmar (미얀마 만달레이시의 단순화된 교통망을 이용한 전통적인 4단계 교통 모델에 관한 연구)

  • Wut Yee Lwin;Byoung-Jo Yoon;Sun-Min Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 2024
  • Purpose: The purpose of this study is to explain the pivotal role of the travel forecasting process in urban transportation planning. This study emphasizes the use of travel forecasting models to anticipate future traffic. Method: This study examines the methodology used in urban travel demand modeling within transportation planning, specifically focusing on the Urban Transportation Modeling System (UTMS). UTMS is designed to predict various aspects of urban transportation, including quantities, temporal patterns, origin-destination pairs, modal preferences, and optimal routes in metropolitan areas. By analyzing UTMS and its operational framework, this research aims to enhance an understanding of contemporary urban travel demand modeling practices and their implications for transportation planning and urban mobility management. Result: The result of this study provides a nuanced understanding of travel dynamics, emphasizing the influence of variables such as average income, household size, and vehicle ownership on travel patterns. Furthermore, the attraction model highlights specific areas of significance, elucidating the role of retail locations, non-retail areas, and other locales in shaping the observed dynamics of transportation. Conclusion: The study methodically addressed urban travel dynamics in a four-ward area, employing a comprehensive modeling approach involving trip generation, attraction, distribution, modal split, and assignment. The findings, such as the prevalence of motorbikes as the primary mode of transportation and the impact of adjusted traffic patterns on reduced travel times, offer valuable insights for urban planners and policymakers in optimizing transportation networks. These insights can inform strategic decisions to enhance efficiency and sustainability in urban mobility planning.

Analysis of Runoff Reduction Characteristics According to Alloted Detention System in Urban Area (도시유역의 분담저류 방식에 따른 유출저감특성 분석)

  • Kim, Ji -Tae;Kwon, Wook;Kim, Young-Bok;Kim, Soo-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.915-922
    • /
    • 2006
  • National Emergency Management Agency is planning a flood disaster mitigation system in urban area. This research is about analysis of runoff reduction efficiency of the alloted detention system which is one of flood disaster mitigation systems in urban area. The alloted detention system is composed of small to middle size detention facilities located in up and middle stream of urban basin. To analyze runoff reduction efficiency of alloted detention system, basic runoff analysis in test area has been carried out and runoff characteristics with size and locations of detention facilities has been simulated. The results of simulation are showing that alloted detention system can reduce the discharge of main stream and detention facilities' size and locations are major parameters of runoff reduction efficiency. It is concluded that alloted detention system can be a useful method in urban area's flood disaster mitigation and can secure safety against flood damages in urban areas.

Delineation of the evacuation route plan, relief camp and prioritization using GIScience

  • Joy, Jean;Kanga, Shruti;Singh, Suraj Kumar;Sudhanshu, Sudhanshu
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Rising urban flood patterns are a universal phenomenon and a significant challenge for city government and urban planners worldwide. Urban flood problems range from relatively localized incidents to substantial incidents, which lead to cities being flooded for a few hours to several days. Therefore, the effect may be widespread, such as the temporary displacement of individuals, disruption to civic facilities, water quality degradation and the possibility of epidemics. The problems raised by urban flooding are highly challengeable and compound by ongoing climate change, with adverse implications for changes in rainfall and gaps in intra-urban rainfall distribution. Unplanned construction and invasions of large houses along rivers and watercourses have interfered in natural rivers and watercourses. As a result, the runoff has risen in proportion to the urbanization of the urban floods. The location of the relief camp and the priority for evacuation were determined, and the safest route to avoid floods were established. This method can be used for emergency planning in future flood incidents, and it will help plan disaster preparedness for Panchayat. This study will promote the flood plain's potential use for disaster management and land use planning virtually.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.

Construction and Monitoring of Test bed in Urban Sediment Disaster Prevention Technology (도심지 토사재해 방어기술 테스트베드 구축 및 모니터링 연구)

  • Lee, Jung-min;Kim, Hyo-Jin;Lee, Yoon-Sang;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • In this study, sediment transfer and precipitation analysis of the test bed watershed was conducted through the model for the application and practical use of the urban sediment disaster prevention technology, and used this as an aid to design to secure reliability. In addition, conducted the test bed monitoring with the defense technology, analyzed the effect, and established the maintenance plan. Analyzed the change of soil deposition volume through arbitrary slope adjustment for the currently installed stormwater conduit of the test bed watershed. As a result, it is important to reduce the total sedimentation amount in the adjustment of the slope of the entire pipeline, but it is important that the sedimentation depth of each sediment does not rise to such a degree as to threaten the performance of the pipeline. Considering these matters, it is necessary to design the pipeline to prevent the clogging of the soil from the viewpoint of the reliability of the entire pipeline. The sediment disaster defense technology test bed is divided into a new city and an old city, and old city test bed is under construction. The result obtained through the monitoring of the test bed in the new city, sediment disasters such as debris can delay the time to reach the downtown area, and it is possible to secure the golden time, such as evacuation and rescue through the warning system. Also, the maintenance of the test bed application was suggested. Continuous and systematic monitoring is required for securing the reliability of element technology and successful commercialization.