• Title/Summary/Keyword: Uranium isotope

Search Result 62, Processing Time 0.021 seconds

Remote handling systems for the Selective Production of Exotic Species (SPES) facility

  • Giordano Lilli ;Lisa Centofante ;Mattia Manzolaro ;Alberto Monetti ;Roberto Oboe;Alberto Andrighetto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.378-390
    • /
    • 2023
  • The SPES (Selective Production of Exotic Species) facility, currently under development at Legnaro National Laboratories of INFN, aims at the production of intense RIB (Radioactive Ion Beams) employing the Isotope Separation On-Line (ISOL) technique for interdisciplinary research. The radioactive isotopes of interest are produced by the interaction of a multi-foil uranium carbide target with a 40 MeV 200 μA proton beam generated by a cyclotron proton driver. The Target Ion Source (TIS) is the core of the SPES project, here the radioactive nuclei, mainly neutron-rich isotopes, are stopped, extracted, ionized, separated, accelerated and delivered to specific experimental areas. Due to efficiency reasons, the TIS unit needs to be replaced periodically during operation. In this highly radioactive environment, the employment of autonomous systems allows the manipulation, transport, and storage of the TIS unit without the need for human intervention. A dedicated remote handling infrastructure is therefore under development to fulfill the functional and safety requirement of the project. This contribution describes the layout of the SPES target area, where all the remote handling systems operate to grant the smooth operation of the facility avoiding personnel exposure to a high dose rate or contamination issues.

Optimal Cycle Length of MAGNOX Reactor for Weapons-Grade Plutonium Production

  • Seongjin Jeong;Jinseok Han;Hyun Chul Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.219-226
    • /
    • 2024
  • Democratic People's Republic of Korea (DPRK) has produced weapon-grade plutonium in a graphite-moderated experimental reactor at the Yongbyon nuclear facilities. The amount of plutonium produced can be estimated using the Graphite Isotope Ratio Method (GIRM), even without considering specific operational histories. However, the result depends to some degree on the operational cycle length. Moreover, an optimal cycle length can maximize the number of nuclear weapons made from the plutonium produced. For conservatism, it should be assumed that the target reactor was operated with an optimal cycle length. This study investigated the optimal cycle length using which the Calder Hall MAGNOX reactor can achieve the maximum annual production of nuclear weapons. The results show that lower enrichment fuel produced a greater number of critical plutonium spheres with a shorter optimal cycle length. Specifically, depleted uranium (0.69wt%) produced 5.561 critical plutonium spheres annually with optimal cycle lengths of 251 effective full power days. This research is crucial for understanding DPRK's potential for nuclear weapon production and highlights the importance of reactor operational strategy in maximizing the production of weapons-grade plutonium in MAGNOX reactors.

Occurrence of Uranium-238 and Rn-222 in Groundwater and Its Relationship with Helium Isotope (지하수 내 우라늄-238 및 라돈-222 산출과 헬륨 동위원소와의 상관성 연구)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Hong, Jin Woo;Kim, Cheon Hwan;Nagao, Keisuke;Kim, Young-Seog;Kang, Tae-Seob
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.659-669
    • /
    • 2021
  • The purpose of this study is to elucidate the relationship between occurrence of natural radioactive materials such as 238U and 222Rn and original mixing ratio of helium isotope of groundwater from various geology, and to suggest the underground aquifer environment from helium original mixing data. 9 groundwater samples were collected from five study areas, and 238U, Rn-222 and helium isotope were analyzed. A high 238U content of the range of 218~477 ㎍ /L in the groundwater occurs in the twomica granite. 4He air-crust mixing ratio and the Rn-222 content show a rough relation, that is, Rn-222 content increases according to the increase of 4He crust mixing ratio. Because of helium and radon are an inert gas, their behavior in underground environment is assumed as an analogous. The 238U content and He isotope in groundwater does not show any distinct correlation. The groundwater can be classified as three groups (air, air-crust mixing, crust-mantle mixing origin) on the diagram of 3He/4He vs 4He/20Ne, which is composed of original mixing line from air-crust-mantle end members. This original mixing of helium can provide the information of underground aquifer characteristic such as the connection with surface environment or isolation condition from air environment.

Electrodeposition of some Alpha-Emitting Nuclides and its Isotope Determination by Alpha Spectrometry (몇가지 알파입자 방출 핵종의 전해석출 및 알파 스펙트럼 측정에 의한 그의 동위원소 정량)

  • Key-Suck Jung;In-Suck Suh
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.279-286
    • /
    • 1983
  • An apparatus was made for the electrodeposition of alpha emitting actinide nuclides, $^{207}Bi$ and $^{210}Po$. The electrodeposition was made on a polished stainless steel plate cathode. The anode was made of platinum wire and to stir the solution. With the ammonium chloride as electrolyte initial pH = 4, chloride concentration = 0.6M and solution volume = 15ml, a current of 1.5 ampere(current density = 0.59A/$cm^2$) was flowed for 100 minutes for the quantitative recovery of electrodeposition and on average recovery of 98.3% was obtained within ${\pm}$0.7% uncertainty. Alpha spectrometry of the electrodeposited sample showed alpha peaks from $^{210}Po, ^{234}U$ and $^{239}Pu$ having energy resolution (FWHM) of 18.3, 21.8 and 36.0 keV respectively. The electrodeposition and alpha spectrometry for a natural uranium sample of domestic origin gave $^{238}U : ^{234}U = 1 : 6.1{\times}10^{-5}$ and for a neutron-irradiated uranium sample did $^{238}U : ^{239}Pu : ^{241}Am = 100 : 0.0263 : 5.20{times}10^{-5}$. The result of $^{238}U$ determination in the irradiated sample by electrodeposition-alpha spectrometry was in accord within ${\pm}1.6%$ of relative error with the results of solid fluorimetry and mass spectrometry. For $^{239}Pu$ the result of electrodeposition-alpha spectrometry was in accord within ${\pm}$4.0% of relative error with the results of anion exchange separation and the thenoyltrifluoroacetone(TTA) extraction both followed by alpha spectrometries.

  • PDF

Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed (수평식 이중원통형 ZrCo 용기 내 수소 흡탈장 및 열전달 모델링)

  • Park, Jongcheol;Lee, Jungmin;Koo, Daeseo;Yun, Sei-Hun;Paek, Seungwoo;Chung, Hongsuk
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • Long-term global energy-demand growth is expected to increase driven by strong energy-demand growth from developing countries. Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, even though it also presents so far insurmountable scientific and engineering challenges. One of the challenges is safe handling of hydrogen isotopes. Metal hydrides such as depleted uranium hydride or ZrCo hydride are used as a storage medium for hydrogen isotopes reversibly. The metal hydrides bind with hydrogen very strongly. In this paper, we carried out a modeling and simulation work for absorption/desorption of hydrogen by ZrCo in a horizontal annulus cylinder bed. A comprehensive mathematical description of a metal hydride hydrogen storage vessel was developed. This model was calibrated against experimental data obtained from our experimental system containing ZrCo metal hydride. The model was capable of predicting the performance of the bed for not only both the storage and delivery processes but also heat transfer operations. This model should thus be very useful for the design and development of the next generation of metal hydride hydrogen isotope storage systems.

Assessment of a U Product purity from Pyroprocessing Spent EBR-II Fuel (EBR-II 사용후핵연료의 건식처리공정에 의한 우라늄의 순도 평가)

  • Lee, Jung-Won;Lee, Han-Soo;Kim, Eung-Ho;Lee, Jong-Hyeon;Vaden, D.;Westphal, B.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • A comprehensive analysis has been conducted on the purity of the uranium product generated from a pyroprocessing of EBR-II spent fuel. The analysis results were compared to the low-level waste criteria for both ROK and USA under a collaborative program between INL and KAERI. It is found that the US LLW definition does not include the activity from any U isotopes, but the Korean one does. The analysis results show that Pu-239 is the only alpha emitting isotope other than U isotopes that exceed the limit in the EBR-II U product. Pu contamination of the product seems to be drastically reduced in a preliminary test of the modified cathode process, and the further development of the proposed technology may be possible to meet the US LLW criteria.

  • PDF

RECYCLING OPTION SEARCH FOR A 600-MWE SODIUM-COOLED TRANSMUTATION FAST REACTOR

  • LEE, YONG KYO;KIM, MYUNG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.47-58
    • /
    • 2015
  • Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. Thefsensitivity of cooling time before prior to pyro-processing was studied. As the cooling time sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to ${\leq}20%$ in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

Determination of trace actinide (Am, Pu, Th, U) using alpha spectrometry and neutron activation analysis (알파분광법과 중성자방사화분석법에 의한 극미량의 악티늄계원소 (Am, Pu, Th, U)분석연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Kim, Yongjai;Lee, Myong Ho
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2004
  • Determination of actinides in the environmental sample requires separation of each element. This procedure is tedious and time consuming. And also, the detection limits of some nuclides using alpha spectrometry are rather higher. To overcome the lower detection limit and complicated separation procedure, a simple analytical technique for the determination of actinide isotopes in the environmental samples was developed and applied to IAEA and NIST reference sediment samples. For the separation of actinides from matrix, anion exchange resin and TRU-spec extraction chromatography resin were used and chemical yields were obtained using natural uranium, thorium, $^{242}Pu$ and $^{243}Am$ tracers. For overcoming the higher detection limits of U and Th in alpha spectrometry, neutron activation analysis was applied. Using combined method, the detection limit was increased about 10 times. The activity values of each isotope were consistent with the reference values reported by IAEA and NIST.

LOCAL BURNUP CHARACTERISTICS OF PWR SPENT NUCLEAR FUELS DISCHARGED FROM YEONGGWANG-2 NUCLEAR POWER PLANT

  • Ha, Yeong-Keong;Kim, Jung-Suck;Jeon, Young-Shin;Han, Sun-Ho;Seo, Hang-Seok;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.79-88
    • /
    • 2010
  • Spent $UO_2$ nuclear fuel discharged from a nuclear power plant (NPP) contains fission products, U, Pu, and other actinides. Due to neutron capture by $^{238}U$ in the rim region and a temperature gradient between the center and the rim of a fuel pellet, a considerable increase in the concentration of fission products, Pu, and other actinides are expected in the pellet periphery of high burnup fuel. The characterization of the radial profiles of the various isotopic concentrations is our main concern. For an analysis, spent nuclear fuels originating from the Yeonggwang-2 pressurized water reactor (PWR) were chosen as the test specimens. In this work, the distributions of some actinide isotopes were measured from center to rim of the spent fuel specimens by a radiation shielded laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) system. Sampling was performed along the diameter of the specimen by reducing the sampling intervals from 500 ${\mu}m$ in the center to 100 ${\mu}m$ in the pellet periphery region. It was observed that the isotopic concentration ratios for minor actinides in the center of the specimen remain almost constant and increase near the pellet periphery due to the rim effect apart from the $^{236}U$ to $^{235}U$ ratio, which remains approximately constant. In addition, the distributions of local burnup were derived from the measured isotope ratios by applying the relationship between burnup and isotopic ratio for plutonium and minor actinides calculated by the ORIGEN2 code.

COMPUTATIONAL INVESTIGATION OF 99Mo, 89Sr, AND 131I PRODUCTION RATES IN A SUBCRITICAL UO2(NO3)2 AQUEOUS SOLUTION REACTOR DRIVEN BY A 30-MEV PROTON ACCELERATOR

  • GHOLAMZADEH, Z.;FEGHHI, S.A.H.;MIRVAKILI, S.M.;JOZE-VAZIRI, A.;ALIZADEH, M.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.875-883
    • /
    • 2015
  • The use of subcritical aqueous homogenous reactors driven by accelerators presents an attractive alternative for producing $^{99}Mo$. In this method, the medical isotope production system itself is used to extract $^{99}Mo$ or other radioisotopes so that there is no need to irradiate common targets. In addition, it can operate at much lower power compared to a traditional reactor to produce the same amount of $^{99}Mo$ by irradiating targets. In this study, the neutronic performance and $^{99}Mo$, $^{89}Sr$, and $^{131}I$ production capacity of a subcritical aqueous homogenous reactor fueled with low-enriched uranyl nitrate was evaluated using the MCNPX code. A proton accelerator with a maximum 30-MeV accelerating power was used to run the subcritical core. The computational results indicate a good potential for the modeled system to produce the radioisotopes under completely safe conditions because of the high negative reactivity coefficients of the modeled core. The results show that application of an optimized beam window material can increase the fission power of the aqueous nitrate fuel up to 80%. This accelerator-based procedure using low enriched uranium nitrate fuel to produce radioisotopes presents a potentially competitive alternative in comparison with the reactor-based or other accelerator-based methods. This system produces ~1,500 Ci/wk (~325 6-day Ci) of $^{99}Mo$ at the end of a cycle.