References
- M.E. Bunker, Early Reactors, fromFermi's Water Boiler to Novel Power Prototypes, Los Alamos Science, New Mexico, United States, 1983, pp. 124-131.
- J.A. Lane, H.O. Macpherson, F. Maslan, Fluid Fuel Reactors, Addison-Wesley Publishing, (MA), Geneva, Switzerland, 1958, p. 345.
- A. Pablo, Y.D. Baranaev, A.M.M.L. Barbosa, F. Barbry, E. Bradley, I. Goldman, G.W. Neeley, et al., IAEA-TECDOC-1601. Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and Other Short Lived Radioistotopes, Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency, Vienna, Austria, 2008.
- F. Stichelbaut, Design of New Solutions to Produce 99Mo Using Sub-critical Systems IBA, Belgium, Science and Technology Facilities Council, U.K., 2011.
- S. Chemerisov, A.J. Youker, A. Hebden, N. Smith, P. Tkac, C.D. Jonah, J. Bailey, V. Makarashvili, B. Micklich, M. Kalensky, G.F. Vandegrif, Development of the Mini-SHINE/MIPS Experiments, Molybdenum-99 Topical Meeting, New Mexico, Argonne National Laboratory, Dec. 4-7, 2011.
- F. Stichebaut, Y. Jongen, Design of accelerator-based solutions to produce 99Mo using lowly-enriched uranium, Prog. Nucl. Sci. Technol. 2 (2011) 284-288. https://doi.org/10.15669/pnst.2.284
- N.R. Stevenson, M.K. Korenko, R.E. Schenter, F-M. Su, Hybrid Accelerator-Heavy Water System for Production of a Reliable, Domestic Supply of Molybdenum-99 without the Use of Highly Enriched Uranium, Advanced Medical Isotope Corp, Kennewick (WA), USA.
-
K. Elgin, A Study of the Feasibility of
$ Production inside the TU Delft Hoger Onderwijs Reactor, Thesis, October 2014.$^{99}Mo$ $ - M.L. Fensin, Development of the MCNPX Depletion Capability: A Monte Carlo Depletion Method that Automates the Coupling Between MCNPX and CINDER90 for High Fidelity Burnup Calculations, Florida University, 2008.
-
J.R. Boyce, Proton-induced Fission Cross Sections of the Uranium Isotopes
$^{233}U$ ,$^{234}U$ ,$^{235}U$ ,$^{236}U$ , and$^{238}U$ , PhD thesis, Duke University, Durham, North Carolina, United States, 1972. - J.R. Boyce, D. Hayward, R. Bass, H.W. Newson, E.G. Bilpuch, F.O. Purser, H.W. Schmitt, Absolute cross sections for protoninduced fission of the uranium isotopes, Phys. Rev. C-10 (1974) 231-244.
-
G.H. McCormick, B.L. Cohen, Fission and total reaction cross sections for 22-Mev protons on
$^{232}Th$ ,$^{235}U$ , and$^{238}U$ , Phys. Rev. 96 (1954) 722-724. https://doi.org/10.1103/PhysRev.96.722 - EXFOR-IAEA Nuclear Data Services. Available from: https://www-nds.iaea.org/exfor/ (cited Oct 6, 2015).
- Thermal Conductivity for all the elements. Available from: periodictable.com/Properties/A/ThermalConductivity.html (cited 13 Nov 2015).
-
A. Isnaeni, M.S. Aljohani, T.G. Aboalfaraj, S.I. Bhuiyan, Analysis of
$^{99}Mo$ production capacity in uranyl nitrate aqueous homogeneous reactor using ORIGEN and MCNP, Atom Indones. J. 40 (2014) 40-43. -
D.Y. Chuvilin, J.D. Meister, S.S. Abalin, R.M. Ball, G.Y. Grigoriev, V.E. Khvostionov, D.V. Markovskij, H.W. Nordyke, V.A. Pavshook, An interleaved approach to production of
$^{99}Mo$ and$^{89}Sr$ medical radioisotopes, J. Radioanal. Nucl. Chem. 257 (2003) 59-63. https://doi.org/10.1023/A:1024737108225 - D.B. Pelowitz, Users' Manual Version of MCNPX2.6.0, LANL, LA-CP-07-1473, Los Alamos National Laboratory, New Mexico, United States, 2008.
-
D. Saha, J. Vithya, G.V.S. Ashok Kumar, K. Swaminathan, R. Kumar, C.R. Venkata Subramani, P.R. Vasudeva Rao, Feasibility studies for production of
$^{89}Sr$ in the Fast Breeder Test Reactor (FBTR), Radiochim. Acta 101 (2013) 667-673. - Y. Jongen, P. Cohilis, P. Dhondt, L. Van Den Durpel, H. Ait Abderrahim, A Proton-driven, intense, subcritical, fission neutron source, in: Proceedings of the 14th International Conference on Cyclotrons and Their Applications, Cape Town (South Africa), 1995, pp. 610-613.
-
K. Bertsche, Accelerator Production Options for
$^{99}Mo$ , Proceedings of IPAC'10 08 Applications of Accelerators, Technology Transfer and Industrial Relations, U01 Medical Applications, (MOPEA025), Kyoto (Japan), May, 2010, pp. 121-123. - M. Khan, T. Jabbar, M. Asif, M.I. Anjum, M. Dilband, K. Khan, A. Jabbar, W. Arshed, Radiostrontium separation from sodium molybdate solution and its measurement using LSA: an application to radiopharmaceutical analysis, J. Radioanal. Nucl. Chem. 299 (2014) 577-582. https://doi.org/10.1007/s10967-013-2841-z
- WOSMIP III-Workshop on Signatures of Medical and Industrial Isotope Production, Castello di Strassoldo di Sopra, Strassoldo, Friuli-Venezia Giulia, Italy, Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830, 19-22 Jun, 2012.
-
S. K. Klein,
$^{99}Mo$ Production Technology Development at LANL, LA-UR 11-05325, Los Alamos National Laboratory, New Mexico, United States. - A. Fong, T.I. Meyer, K. Zala, Making Medical Isotopes: Report of the Task Force on Alternatives for Medical-isotope Production, TRIUMF, Vancouver (Canada), 2008.
- S. Buono, N. Burgio, L. Maciocco, Technical Evaluation of an Accelerator-driven Production of Mo-99 for Tc-99mGenerators at CERN (MolyPAN Project), 2010 https://indico.cern.ch/event/70767/.../Maciocco_Mo99_talk.pdf, Geneva, Switzerland.
- Available from: Production and Supply of Molybdenum-99, International Atomic Energy Agency, Vienna, Austria, 2010 https://www.iaea.org/.../gc54inf-3-a (cited Oct 6, 2015).
- M.V. Huisman, Medical Isotope Production Reactor, Reactor Design for a Small Sized Aqueous Homogeneous Reactor for Producing Molybdenum-99 for Regional Demand, Master thesis, Delft University, Delft, Netherlands, 2013, p. 11.
-
IAEA-TECDOC-1051, Management of Radioactive Waste from
$^{99}Mo$ Production, 1998. - D.C. Stepinski, E.O. Krahn, P.-L. Chung, G.F. Vandegrift, Design of Column Separation Processes for Recovery of Molybdenum from Dissolved High Density LEU Target, Argonne National Laboratory, New Mexico, United States, 2011.
-
R.N. Varma, K.L.N. Rao, G.N. Chavan, K.R. Balasubramanian, T.S Murthy, Separation of
$^{88}Sr$ from Irradiated Uranium Using Polyantimonic Acid, 1982, 4 pp, Department of Atomic Energy, Bombay (India), 7-11 Dec 1982. Radiochemistry and Radiation Chemistry Symposium, Pune (India).
Cited by
- Mo-99 Isotope Production Calculation of SAMOP Reactor Experimental Facility vol.1090, pp.None, 2018, https://doi.org/10.1088/1742-6596/1090/1/012013
- Neutronic Analysis of SAMOP Reactor Experimental Facility Using SCALE Code System vol.1090, pp.None, 2015, https://doi.org/10.1088/1742-6596/1090/1/012032
- Molybdenum-99 production calculation analysis of SAMOP reactor based on thorium nitrate fuel vol.978, pp.None, 2015, https://doi.org/10.1088/1742-6596/978/1/012072
- Commissioning Preparation of a Subcritical Experimental Facility For 99Mo Production vol.1198, pp.2, 2015, https://doi.org/10.1088/1742-6596/1198/2/022023
- Multi-physics evaluation of the steady-state operation of an Aqueous Homogeneous Reactor for producing Mo-99 for the Brazilian demand vol.24, pp.1, 2015, https://doi.org/10.5541/ijot.790728
- Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for 99Mo production vol.32, pp.11, 2021, https://doi.org/10.1007/s41365-021-00968-x
- Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for 99Mo production vol.32, pp.11, 2021, https://doi.org/10.1007/s41365-021-00968-x