• Title/Summary/Keyword: Uranium Ion(VI)

Search Result 36, Processing Time 0.025 seconds

Adsorption Characteristics of U ranium (VI) Ion on Cryptand Synthetic Resin Adsorbent

  • Kim, Hae-Jin
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.225-231
    • /
    • 2017
  • Cryptand resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 5%, and 10% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > calcium ($Ca^{2+}$) > neodymium ($Nd^{3+}$) ion, adsorbability of the uranium ion was the crosslink in order of 1%, 2%, 5%, and 10% and it was increased with the lower dielectric constant.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Adsorption of Uranium(VI) Ion Utilizing Cryptand Ion Exchange Resin (Cryptand 이온교환 수지를 이용한 우라늄(VI) 이온의 흡착)

  • Park, Seong-Kyu;Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2004
  • Cryptand ion exchange resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 5% and 10% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium ($UO{_2}^{2+}$) ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium ($UO{_2}^{2+}$), magnesium ($Mg^{2+}$), neodymium ($Nd^{3+}$) ion. The adsorption was in order of 1%, 2%, 5%, and 10% crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Adsorption Characteristic of U(VI), Cu(II), Dy(III) Ions Utilizing Nitrogen-Donator Synthetic Resin (질소-주게 합성수지를 이용한 U(VI), Cu(II), Dy(III) 이온들의 흡착특성)

  • Rho, Gi-Hwan;Kim, Joon-Tae;Kim, Hee-Joung
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.52-60
    • /
    • 2006
  • The ion exchange resins have been synthesized from chlormethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, and 20%-crosslinking and macrocyclic ligand of cryptand 21 by copolymerization method and the adsorption characteristics of uranium(VI), copper(II) and dysprosium(III) metallic ions have been investigated in various experimental conditions. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, equilibrium time, dielectric constant of solvent and crosslink on adsorption of metallic ions were investigated. The metal ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO^{2+}_2)\;>\;copper(Cu^{2+})\;>\;dysprosium(Dy^{3+})$ ion. The adsorption was in order of 1%, 2%, and 20% crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Adsorption of Uranium (VI) Ion on the 1-Aza-12-Crown-4-Styrene-DVB Synthetic Resin Adsorbent (1-Aza-12-Crown-4-Styrene-DVB 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.304-309
    • /
    • 2008
  • Cryptand series ion exchange resins were synthesized with 1-aza-12-crown-4 macrocyclic ligand attached to styrene (4 series dangerous matter) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 4% and 8% by a substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, electron micrograph, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium (${UO_2}^{2+}$) ion were investigated. The uranium ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (${UO_2}^{2+}$) > nickel ($Ni^{2+}$) > gadolinium ($Gd^{3+}$) ion. The adsorption was in order of 1%, 2%, 4%, and 8% crosslinked resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Adsorption of uranium(VI) ion on the nitrogen-donor macrocyclic synthetic resin adsorbent (질소-주게 거대고리 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2008
  • Resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand into styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1%, 2%, 6% and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, elemental analysis, thermogravimetric analysis, electron microscopy, and IR. The effects of pH, time, crosslink of resins and dielectric constant of solvent on adsorption of uranium ion by resin adsorbent were investigated. Uranium ion showed a great adsorption above pH 3 and adsorption equilibrium of metal ions was established in about two hours. In addition, adsorptive selectivity of resin in ethanol solvent was $UO{_2}^{2+}$ > $Zn^{2+}$ > $Lu^{3+}$ ion and adsorption of uranium ion increased with the increase of the degree of crosslinking (1%~12%) and was inversely in proportional to the order of dielectric constant of solvents.

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.167-177
    • /
    • 2013
  • We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.

Adsorption Characteristics of Uranium (VI) Ion on OenNdien Resin with Styrene Hazardous Material (스타이렌 위험물을 포함한 OenNdien 수지에 의한 우라늄(VI) 이온의 흡착 특성)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.697-702
    • /
    • 2011
  • Ion exchange resins have been synthesized from chloromethylated styrene-1,4-divinylbenzene (DVB) with 1%, 2%, 5% and 15%-crosslinkage and macrocyclic ligand of $OenNdien-H_4$ by copolymerization. The adsorption characteristics of uranium (${UO_2}^{2+}$), potassium ($K^+$) and neodymium ($Nd^{3+}$) metallic ions have been investigated. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, and crosslinkage on adsorption of metallic ions were also studied. The uranium ion showed the fast adsorption on the resins above pH 3. The optimum equilibrium time for the adsorption of metallic ions was about two hours. The adsorption selectivity determined in methanol solution was in increasing order uranium (${UO_2}^{2+}$) > potassium ($K^+$) > neodymium ($Nd^{3+}$) ion. Moreover, the adsorption was increased with the crosslinkage concentration in order of 1%, 2%, 5% and 15%-crosslinkage resin.

Study on the Solubility of U(VI) Hydrolysis Products by Using a Laser-Induced Breakdown Detection Technique (레이저유도파열검출 기술을 이용한 우라늄(VI) 가수분해물의 용해도 측정)

  • Cho, Hye-Ryun;Park, Kyoung-Kyun;Jung, Euo-Chang;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.189-197
    • /
    • 2007
  • The solubility of U(VI) hydrolysis products was determined by using a laser-induced breakdown detection (LIBD) technique. The experiments were carried out at uranium concentrations in range from $2{\times}10^{-4}\;M\;to\;4{\times}10^{-6}\;M$, pH values between 3.8 and 7.0, the constant ionic strength of 0.1 M $NaClO_4$ and the temperature of $25.0{\pm}0.1^{\circ}C$. The solubility product of U(VI) hydrolysis products was calculated from LIBD results by using the hydrolysis constants selected in NEA-TDB. The solubility product extrapolated to zero ionic strength, ${\log}K^{\circ}_{sp}=-22.85{\pm}0.23$ was calculated by using a specific ion interaction theory (SIT). The spectral features of ionic species in uranium solutions were investigated by using a conventional UV-visible absorption spectrophotometer and a fluorophotometer, respectively, $(UO_2)_2(OH)_2^{2+}\;and\;(UO_2)_3(OH)_5^+$ were dominant species at uranium concentration of $2{\times}10^{-4}\;M$.

  • PDF

Adsorption of Metal Ions on OenNdien Resin (OenNdien수지에 의한 금속 이온의 흡착)

  • Kang Young-Shik;Rho Gi-Hwan;Kim Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.27-35
    • /
    • 2005
  • The ion exchange resins have been synthesized from chlormethyl styrene - 1,4 -divinyl-benzene(DVB) with $1\%,\;4\%,\;and\;10\%$-crosslinking and macrocyclic ligand of cryptand type by copolymerization method and the adsorption characteristics of uranium(VI), calcium(II) and lutetium(III) metallic ions have been investigated in various experimental conditions. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of metallic ions were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium $(UO_2^{2+})>calcium(Ca^{2+})>lutetium(Lu^{3+})$ ion. The adsorption was order of $1\%,\;4\%,\;and\;10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.