• 제목/요약/키워드: Uptake capacity

검색결과 348건 처리시간 0.029초

Effect of Phosphorus on the Cadmium Transfer and ROS-scavenging Capacity of Rice Seedlings

  • Jung, Ha-Il;Chae, Mi-Jin;Kong, Myung-Suk;Kim, Yoo-Hak
    • 한국토양비료학회지
    • /
    • 제50권4호
    • /
    • pp.203-214
    • /
    • 2017
  • Environmental toxicity due to cadmium (Cd) pollution in croplands causes critical problems worldwide. Rice (Oryza sativa L.) is an important crop in Asia, including South Korea, and numerous studies have evaluated the relationship between Cd and antioxidants to alleviate Cd uptake from the soil into plants. However, information about the relationship between phosphorus (P) and antioxidants in rice seedlings is still limited with regard to Cd phytotoxicity. We therefore investigated the physiological responses of rice (Oryza sativa L. cv 'Dongjin') seedlings to Cd toxicity and the effect of P application on reactive oxygen species (ROS) and antioxidant changes. The exposure of rice seedlings to $30{\mu}M$ Cd inhibited plant growth; increased the contents of superoxide, hydrogen peroxide, and malondialdehyde; and induced Cd uptake by the roots and leaves. Application of P to Cd-exposed seedlings decreased Cd-induced oxidative stress by enhancing the capacity of ascorbate (AsA) production and ROS-scavenging, and decreased Cd transfer from the roots to the leaves. These results suggest that P application alleviated Cd-induced growth inhibition and oxidative damage by restricting Cd translocation from the roots to the leaves and maintaining sufficient levels of AsA.

LAND FARMING OF WATER PLANT ALUM SLUDGE ON ACID MINERAL SOIL AFFECTED BY ACID WATER

  • Lee, Seung-Sin;Kim, Jae-Gon;Moon, Hi-Soo;Kang, Il-Mo
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.182-186
    • /
    • 2001
  • An acid forest surface soil as a land farming medium was treated with a water plant alum sludge at 0 to 18%. Indian mustard was grown in the treated soil in a greenhouse for 5 weeks and watered with pH 4 tap water adjusted with a mixed acid (1HNO$_3$: 2H$_2$SO$_4$) during plant growth. Changes in soil property, leachate chemistry, plant growth, and plant uptake of elements by the sludge treatment were determined. The alum sludge treatment increased buffer capacity to acidity, hydraulic conductivity, water holding capacity, and phosphate adsorption of the soil and decreased bulk density and mobility of small particles. The sludge treatment reduced leaching of Al, Mg, K, Na, and root elongation. Plant did uptake less amount of the cations and P but more Ca with the sludge treatment.

  • PDF

Aspergillus niger의 생물 흡착제를 이용한 납이온의 흡착 (Adsorption of lead ion by using biomass of Aspergillus niger)

  • 김병하;김장억;문성훈;김희식;오희목;윤병대;권기석
    • 한국토양환경학회지
    • /
    • 제1권2호
    • /
    • pp.43-50
    • /
    • 1996
  • The adsorption charateristics of lead(II) ions on Aspergillus niger and Rhizopus arrhizus were investigated. Adsorption amount of A. niger and R. arrhizus was about 95 mg/g and 25 mg/g, respectively. These biomass was approached to adsorption equilibrium within reaction time of 1hr because of their high reactivity. The uptake of lead ion by A. niger was less sensitivity than it by R. arrhizus on the inhibition effect of alkali metals and the decreasing ratio of uptake of lead ion of A. niger and R. arrhizus by inhibition effect of alkali metals was 37% and 50%, respectively. In pre-treatment on these biomass, NaOH treatment was contributed high adsorption capacity to these biomass. Then, adsorption amount of A. niger and R. allhizus was increased about 25 mg/g and 10 mg/g, respectively. In isotherm for the adsorption of lead ion based on Freundlich equation, 1/n value of A. niger and R. ar고izus was calculated the range of 0.28-0.56 and 0.44-0.67, respectively.

  • PDF

전기방사에 의한 술폰화 HIPS 이온교환 나노섬유의 제조 및 특성 (Preparation and Characteristics of Sulfonated HIPS ion Exchange Nanofiber by Electrospinning)

  • 최은정;황택성
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.69-74
    • /
    • 2011
  • 본 연구에서는 전기방사를 이용하여 PS의 취성을 개선하고자 내충격성이 우수한 HIPS와 가교제 DVB를 혼합하여 방사한 후 가교와 술폰화 반응을 통해 HIPS 이온교환 나노섬유를 제조하였다. 또한, 이들을 FT-IR, XPS, 함수율, 이온교환 용량, SEM 및 접촉각으로 나노섬유의 기본특성을 확인하였다. FT-IR 및 XPS 구조분석 결과, HIPS 나노섬유는 술폰화 시간이 지남에 따라 $-SO_3H$기의 도입이 증가하는 것을 확인할 수 있었다. 또한 술폰화 시간이 지남에 따라 섬유의 친수성이 증가하여 DVB 함량이 7.5 wt%, 술폰화 시간이 200분일 때 함수율과 이온교환용량은 최대 75.6%, 2.67 meq/g으로 나타났다.

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

Effect of sulfur on the cadmium transfer and ROS-scavenging capacity of rice (Oryza sativa L.) seedlings

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.187-187
    • /
    • 2017
  • Cadmium (Cd) pollution is rapidly increasing in worldwide due to industrialization and urbanization. In addition to its negative effects on the environment, Cd pollution adversely affects human health. Rice (Oryza sativa L.) is an important agricultural crop worldwide, including South Korea, and studies have examined its ability to alleviate Cd uptake from the soil into plants. However, information about the relationship between sulfur (S) and antioxidants in rice seedlings is still limited with regard to Cd phytotoxicity. We therefore investigated the changes in reactive oxygen species (ROS) and antioxidants in rice (Oryza sativa L. 'Dongjin') seedlings exposed to toxic Cd, S treatment, or both. The exposure of rice seedlings to $30{\mu}M$ Cd inhibited plant growth; increased the contents of superoxide, hydrogen peroxide, and malondialdehyde (MDA); and induced Cd uptake by the roots, stems, and leaves. Application of S to Cd-stressed seedlings decreased Cd-induced oxidative stress by increasing the capacity of the glutathione (GSH)-ascorbate (AsA) cycle, promoted S assimilation by increasing cysteine, GSH, and AsA contents in treated plants, and decreased Cd transfer from the roots to the stems and leaves. In conclusion, S application of plants under Cd stress promoted Cys and GSH biosynthesis and GSH-AsA cycle activity, thereby lowering the rate of Cd transfer to plant shoots and promoting the scavenging of the ROS that resulted from Cd toxicity, thus alleviating the overall Cd toxicity. Therefore, these results provide insights into the role of S in regulating the tolerance, uptake, and translocation of Cd in rice seedlings. The results of this study indicate that S application should have potential as a tool for mitigating Cd-stress in cereal crops, especially rice.

  • PDF

유채 품종별 황 공급수준이 황산염 동화에 미치는 영향 (Effect of Sulfate Supply Level on Sulfate Assimilation in Different Oilseed Rape Cultivars)

  • 장천;박상현;소비야 무니르;김태환
    • 한국초지조사료학회지
    • /
    • 제32권2호
    • /
    • pp.101-108
    • /
    • 2012
  • 유채 품종에서 황 공급수준이 황산염 흡수 및 동화에 미치는 영향을 구명하고자 어린 잎과 성엽 조직에서 ATP sulfurylase (ATPs), ${SO_4}^{2-}$ 흡수, 글루타치온 함량을 분석하였다. 본 실험에서 10가지 유채 품종들 (Mosa, Capitol, Saturnin, Akela, Pollen, Mokpo, Youngsan, Tamra Colosse 그리고 Naehan)은 황 공급수준에 따라 몇 가지 황산염 흡수와 동화 능력이 다르게 나타났다. 황 결핍 조건에서 모든 품종의 ATP sulfurylase (ATPs) 활력은 늙은 잎에 비해 어린 잎에서 높게 나타났으며, 글루타치온 함량은 황 공급수준이 감소함에 따라 어린 잎에서 많이 증가하였다. 이러한 결과들은 유채 품종별 황 결핍조건에서 황을 이용하는 능력이 다르다는 것을 잘 보여주었다.

다공성 물질을 이용한 CO2 포집 및 분리: 다공성 탄소와 유연한 MOF 비교 연구 (CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs)

  • 정민지;박서하;오현철;박귀일
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.417-422
    • /
    • 2018
  • The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for $CO_2$ reduction application. The textural properties of these microporous materials are investigated, and their $CO_2$ storage capacity and separation performance are evaluated. Owing to the combined effects of $CO_2-Amino$ interaction and its flexibility, a $CO_2$ uptake of $2.5mmol\;g^{-1}$ is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, $CH_4$ uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for $CO_2/CH_4$ separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher $CO_2$ uptake of $4.7mmol\;g^{-1}$ is also observed at 20 bar 298 K. Furthermore, the $CH_4$ storage capacity is $2.9mmol\;g^{-1}$ at 298 K and 20 bar. To evaluate the $CO_2$ separation performance, the selectivity based on ideal adsorption solution theory for $CO_2/CH_4$ binary mixtures on the presented porous materials is investigated.

막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성 (Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process)

  • 구진선;곽노석;황택성
    • 폴리머
    • /
    • 제36권5호
    • /
    • pp.564-572
    • /
    • 2012
  • 본 연구에서는 막축전식 탈염(membrane capacitive deionization, MCDI) 공정용 음이온교환막의 제조를 위하여 vinylbenzyl chloride-co-ethyl methacrylate-co-styrene(VBC-EMA-St) 공중합체를 합성하였으며, 아민화 반응과 열처리를 통하여 음이온교환막을 제조하였다. 구조확인을 위하여 FTIR 분석을 하였고, GPC와 TGA를 통하여 합성한 고분자의 분자량과 분자분포, 열안정성을 분석하였으며, 함수율 및 이온교환용량을 측정하였다. 또한 LCR meter로 전기저항을 측정하고, MCDI 공정에 적용하기 위하여 제조한 음이온교환막을 충방전 시험 측정하였다. 이온교환용량, 함수율, 전기저항, 분자량은 각각 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$, $3.4{\times}10^4$ g/mol이었으며, CDI 충방전 시험 결과 상용화막인 AMX보다 우수한 성능을 나타내었다.

Effect of Ascorbate on the Arsenic Uptake, ROS-scavenging Capacity, and Antioxidant Homeostasis in Rice

  • Jung, Ha-il;Kong, Myung-Suk;Chae, Mi-Jin;Lee, Eun-Jin;Jung, Goo-Bok;Kim, Yoo-Hak
    • 한국토양비료학회지
    • /
    • 제51권2호
    • /
    • pp.90-100
    • /
    • 2018
  • Environmental pollution with arsenic (As) in croplands causes agricultural and health problems worldwide. Rice is an important crop in South Korea, and many studies have evaluated the relationship between As and glutathione (GSH) to alleviate As uptake from the soil into plants. However, information about the relationship between As and ascorbate (AsA) in rice seedlings is still limited with regard to As phytotoxicity. We therefore investigated changes in reactive oxygen species (ROS) and antioxidant levels in rice (Oryza sativa L. cv 'Dasan') seedlings with toxic As and/or AsA application. The exposure of rice seedlings to $15{\mu}M$ As inhibited plant growth and resulted in increased contents of superoxide, hydrogen peroxide, and malondialdehyde, and induced As uptake by the roots and leaves. Application of AsA to As-exposed seedlings ameliorated As-induced oxidative stress by enhancing the capacity of AsA-GSH cycle in applied plants and increasing As transfer from the roots to leaves. These results suggest that AsA application alleviated As-induced oxidative damage by maintaining sufficient levels of AsA and GSH.