• Title/Summary/Keyword: Upper bound method

Search Result 342, Processing Time 0.025 seconds

An Analysis of Near-Net Forging of External Spline by an Upper Bound Elemental Technique (상계요소법에 의한 External Spline의 Near-Net 단조해석)

  • 양정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.206-211
    • /
    • 1996
  • Closed-die forging of external spine is analysed using an upper bound elemental technique. The kinematically admissible velocity field for three-dimensional deformation in forging of the external spine with trapezoidal teeth was obtained. The upper bound to the deforming load necessary and the the deformed configurations are predicted using integration of the formulation of energy expressions which were obtained from B(upset forging method) were considerd in the present analysis and the theoretical results compared with experimental ones Experiments were carried out on plasticine as model material at room temperature where talcum powder was used as a lubricant. The present investigation revealed that the analytical method B predicts a reducet forging load and improved configuration better than method A for the forged products.

  • PDF

Study for Forging of Spline with Upper Bound Method (상계법을 이용한 스플라인 단조에 관한 연구)

  • 조해용;최재찬;최종웅;민규식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.37-47
    • /
    • 1995
  • Forging of trapezoidal spline, serration and square spline with solid cylindrical billets and hollow one has been investigated by means of upper bound method. Kinematically admissible velocity fields for forging of splines have been proposed in this study. The half pitch of splines has been divided into deformation regons. The neutral surface is introduced into forging of splines with flat punch and, for each step, it is assumed as a circle with its radius rn upper bound solutions obtained obtained by proposed kinematically admissible velocity fields are useful to predict the loads for forging of splines.

  • PDF

Design of Pipe Expanding Die by Upper Bound Analysis and Finite Element Method (상계법과 유한요소법을 이용한 확관금형 설계)

  • Cho, Yong-Il;Kim, Seung-Hwan;Qiu, Yuan-gen;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.98-104
    • /
    • 2020
  • Pipe expansion involves various methods to enlarge the diameter of the pipes with the use of a mandrel or punch placed inside the pipe. In this study, the upper bound method was used to analyze the pipe expanding process as well as design a die. A kinematically admissible velocity field was derived for the upper bound analysis with the occurrence of pipe thinning during the expansion factored in. The analysis confirms that a semi-cone angle of the punch between 15ween pip is most advantageous for pipe expansion. The results of the upper bound analysis, which were also consistent with those of the FEM, can be useful for the design of a pipe expansion die.

An Analysis for Drawing of Strip by UBET with Rigid Elements (강체요소를 이용한 인발 공정의 상계요소 해석)

  • Choi, Il-Kuk;Choi, Young;Hur, Kwan-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.598-603
    • /
    • 2001
  • For metal forming analysis, upper-bound solution is practical method because the solution is overestimated. It is limited to determine stresses on tools by using upper-bound solution. In this study, new scheme to calculate stresses on tools based on upper bound solution is proposed. To verify the proposed scheme, plane strain drawing has been considered. The stresses on tools obtained by the proposed scheme are compared with results of rigid plastic FEM. And the stresses on tools have been determined by the proposed scheme in the forging within plane strain deformation.

  • PDF

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.72-80
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identification. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identification are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identity the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, Dong-Cheol;Chung, Hyung-Hwan;Bae, Jong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2690-2692
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identifcation. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identifcation are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identify the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

Computation of Ultimate Bearing Capacity of Eccentrically Loaded Footing By Upper Bound of Limit Analysis Method (극한해석 상계법을 이용한 편심하중하의 기초 지지력 산정)

  • Kwon, Oh Kyun;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.187-196
    • /
    • 1992
  • This paper estimates the bearing capacity of the eccentrically loaded footing by the upper bound of limit analysis method. Meyerhof method and Saran method used the limit equilibrium method in the estimation of bearing capacity. But, in this study the bearing capacity is estimated by the upper bound method. In applying the upper bound, the result depends on the failure mechanism. So this analysis uses the conventional failure mechanisms or the modified failure mechanisms. The comparisions are made between the results from this analysis and those obtained from the limit equilibrium method. Also, the influences of the parameters-eccentricity, internal friction angle, surcharge, G-value, and base friction of the footing on the bearing capacity factors have been examined.

  • PDF

Analysis on the Geo-reinforced Slope Using Upper Bound Theory (상계해석을 이용한 보강토 사면의 해석)

  • Choi Sang-Ho;Kim Jong-Min;Yu Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.207-215
    • /
    • 2004
  • In this study, the upper bound theory is applied to a reinforced slope to develop an limit state analysis method. As processing of this upper bound theory in formulating finite element, the basic idea of numerical method can be obtained from a macroscopic point of view with an anisotropic homogeneous material. The reinforced soil strength reliability depends on properties of reinforcements which consist of the interaction of interfaces between back fill and reinforcements. Both soil's mechanical property and overall behaviour of reinforced soil can be controlled via arranging geometry and relative proportions of reinforced soil. Therefore, the upper bound theory can not only predict the particular limit state action of reinforced soil slope but also is efficiently able to estimate the local plastic failure.

Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression

  • Phaiboon, Supachai;Phokharatkul, Pisit;Somkurnpanit, Suripon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1249-1253
    • /
    • 2005
  • This paper presents a method to model the path loss characteristics in microwave urban line-of-sight (LOS) propagation. We propose new upper- and lower-bound models for the LOS path loss using fuzzy linear regression (FLR). The spread of upper- and lower-bound of FLR depends on max and min value of a sample path loss data while the conventional upper- and lower-bound models, the spread of the bound intervals are fixed and do not depend on the sample path loss data. Comparison of our models to conventional upper- and lower-bound models indicate that improvements in accuracy over the conventional models are achieved.

  • PDF

Sliding Mode Control Using the Lower Bound of Control Gain (제어이득의 하한을 이용한 새로운 슬라이딩 모드제어)

  • 유병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.664-668
    • /
    • 2003
  • A new sliding mode control method based on the lower bound of control gain is presented. Although the magnitube of the proposed control input is larger than that of the conventional control input using both lower and upper bounds, the positive-negative exchanging chattering is reduced and reaching mode is shorter. Because the proposed scheme needs only the lower bound of control gain, it is applicable to the system whose upper bound of control gain is doubtful to determine such as the control gain depends on the system states. It is proved that the proposed control method guarantees the sliding condition. The analysis of differences between the conventional method and the proposed method is given. The validity of the proposed control strategy is shown through a 2nd-order nonlinear system example.