• Title/Summary/Keyword: Upo-Wetland

Search Result 53, Processing Time 0.019 seconds

Development and Characterization, and Application of Ten Polymorphic Microsatellite Markers in the Crested Ibis Nipponia nippon from South Korea

  • Choi, Eun Hwa;Kim, Gyeongmin;Baek, Su Youn;Kim, Sung Jin;Hwang, Jihye;Jun, Jumin;Jang, Kuem Hee;Ryu, Shi Hyun;Hwang, Ui Wook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.2
    • /
    • pp.154-158
    • /
    • 2020
  • The Asian crested ibis Nipponia nippon is one of the world's most endangered species. Except for the Sanxii population from China, it is known that all of the crested ibis populations from East Asia have been extinguished. In these days, most of them are being inbred as captive populations in China, South Korea, and Japan, which caused their low expected genetic diversity. Microsatellite markers are well known as a suitable DNA marker for exploring genetic diversity among captive populations of a variety of endangered species. In the present study, ten microsatellite markers were developed for the captive populations of the South Korean crested ibis, which were employed to examine the level of genetic diversity with the two founders from Sanxii, China and the 70 descendants of them. As a result, the mean number of gene diversity, observed heterozygosity, and expected heterozygosity of the captive population were 0.70, 0.84, and 0.70 respectively. It revealed that the captive population of South Korea is as genetically more stable than we expected. In addition, the principal coordinates analysis and genetic structure analyses showed that the captive population of N. nippon can be divided into the two different genetic groups. The developed microsatellite markers here could be helpful for crested ibis conservation in East Asian countries such as China and Japan as well as South Korea.

Species Diversity and Community Characteristics of Benthic Macroinvertebrates from Irrigation Ponds in the Western CCZ area, Korea (서부 민간인출입통제구역 일대 둠벙의 저서성대형무척추동물 종 다양성 및 군집 특성)

  • Chung, Hyun-Yong;Yeom, Cheol-Min;Kim, Jae Hyun;Park, Shinyeong;Lee, Yae-Won;Pyo, Gina;Kim, Seung Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.173-184
    • /
    • 2020
  • Irrigation ponds, 'dumbeong', which are artificially constructed water resources for traditional farming, serve as a biological shelter connecting seasonally created rice paddy fields to local freshwater ecosystems. This 2018 study surveyed 143 irrigation ponds in the western Civilian Control Zone (CCZ) area from August to September, revealing species diversity and community characteristics of benthic macroinvertebrates. A total of 13,454 individuals of macroinvertebrates were captured and classified into 3 phyla, 5 classes, 17 orders, 59 families, 192 species. Among Insecta, the most frequently recorded order was Odonata, 55 spp.(33.7%), followed by Coleoptera, 52 spp. (31.9%), Hemiptera, 34 spp. (20.8%), Diptera, 17 spp. (9.8%), Ephemeroptera, 3 spp. (2.4%), Trichoptera, 1 spp. (0.6%) and Lepidoptera, 1 spp. (0.6%). Taxon of non-Insecta consisted of Mollusca, 14 spp. (48.2%), Annelida, 11 spp. (37.9%) and Arthropoda, 4 spp. (3.4%). The analysis of Diversity Index (H'), Species Richness Index (RI), Dominance Index (DI) and Evenness Index (J') revealed the general stability of communities in the study sites. A total of 28 rare species were found in 98 study sites, including three endangered species designated by the Ministry of Environment. These results showed that the species diversity and rarity of macroinvertebrates in the study area were greater than those of previous research on lentic wetlands (lake, etc.) and national conserved wetlands(Upo-swamp, etc.) in Korea. A conservation planning of aquatic ecosystems in the western CCZ area, therefore, should focus on conservation of irrigation ponds.

Determining the Locations of Washland Candidates in the Four Major River Basins Using Spatial Analysis and Site Evaluation (공간분석 및 현장조사 평가 기법을 활용한 4대강 강변저류지 조성 후보지 선정)

  • Jeong, Kwang-Seuk;Shin, Hae-Su;Jung, Ju-Chul;Kim, Ik-Jae;Choi, Jong-Yun;Jung, In-Chul;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.44-54
    • /
    • 2010
  • In this study, a comprehensive exploration and evaluation of washland candidate locations by means of field monitoring as well as spatial analysis in six major river system (Han, Nakdong, Nam, Geum, Youngsan, and Seomjin Rivers). Washland(in other words, river detention basin) is an artificial wetland system which is connected to streams or rivers likely to riverine wetlands. Major purpose of washland creation is to control floodings, water supply and purification, providence of eco-cultural space to human and natural populations. Characteristics and functions of riverine wetlands can be expected as well, thus it is believed to be an efficient multi-purpose water body that is artificially created, in terms of hydrology and ecology. Geographical information and field monitoring results for the washland candidate locations were evaluated in 2009, with respect to optimal location exploration, ecosystem connectivity and educational-cultural circumstances. A total of $269\;km^2$ washland candidate locations were found from spatial analysis (main channel of Rivers South Han, 71.5; Nakdong 54.1; Nam, 2.3; Geum, 79.0; Youngsan 46.4; Seomjin 15.7), and they tended to be distributed in mid- to lower part of the rivers to which tributaries are confluent. Field monitoring at 106 sites revealed that some sites located in the Rivers Nam and Geum is appropriate for restoration or artificial creation as riverine wetlands. Several sites in the Nakdong and Seomjin Rivers were close to riverine wetlands (e.g., Upo), habitats of endangered species (e.g., otters), or adjacent to educational facility (e.g., museums) or cultural heritages (e.g., temples). Those sites can be utilized in hydrological, ecological, educational, and cultural ways when evidence of detailed hydrological evaluation is provided. In conclusion, determination of washland locations in the major river basins has to consider habitat expansion as well as hydrological function (i.e. flood control) basically, and further utility (e.g. educational function) will increase the values of washland establishment.