• Title/Summary/Keyword: Upo wetland

Search Result 53, Processing Time 0.023 seconds

Ecotourism of Upo Wetland and Perceptions of Stakeholders

  • Roh Yong-Ho;Kim Sang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.897-904
    • /
    • 2005
  • The purposes of this study were to investigate ecotourism goals of conservation and increasing residents' benefits based on perceptions from the stakeholders of the Upo wetland. The stakeholders are residents, five villages' reprensentatives, people who were residents but now live out of the area, civil officals, and environmental NGO staffs of he Upo wetland. The results of this study were as follows: While the perceptions of environmental conservation among interviewees were positive, the residents' perceptions about residents' benefits were very negative in the Upo wetland. People who used to reside and then moves out had pride about the Upo and they wanted to return to live in the Upo wetland area. Even though the wetland is named as one of the most well known ecotourism sites by the Ministry of Environment and Korean National Ecotourism Organization(KNTO), the Upo wetland area is not an ecotourism site yet based on the definition of ecotourism goals which seek generating conservation and residents' benefits in this study. There are suggestions for this wetland area. The conservation policy with the residents' benefits are strongly recommended.

An Observational Study on the Differences in Thermal Characteristics of the Upo Wetland and Converted Areas from Wetland to Paddy Field

  • Koo, Hyun-Suk;Jeon, Dae-Youn;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.622-629
    • /
    • 2009
  • This study intended to collect data for evaluating the meteorological value of Upo Wetland which is the largest wetland in the downstream of Nakdong River. The observations were conducted in summer at the Upo Wetland and its surrounding paddy field that is the converted areas from a wetland to a paddy field. The following results are obtained: 1) The temperature of Upo Wetland area was $1^{\circ}C$ lower than the surrounding area during the day while it was a little higher during the night.; 2) The maximum wind speed in the Upo Wetland area was 3.5 m/s which is stronger than 1.6 m/s of its surrounding area. The south wind was observed in the farmland for most of the day while north winds and south winds alternated between day and night in Upo Wetland.; 3) In heat budget analysis, Upo Wetland was wasted in the form of latent heat rather than sensible heat in daytime.

A preliminary study of genetic structure and relatedness analysis of Nutria (Myocastor coypus) in Upo Wetland

  • Jung, Jongwoo;Jo, Yeong-Seok
    • Journal of Species Research
    • /
    • v.1 no.1
    • /
    • pp.100-103
    • /
    • 2012
  • Nutria Myocastor coypus is one of a well known invasive riparian mammal found species around world from North America to Eurasia and Africa. In South Korea, feral nutrias inhabit areas from the Nakdonggang and Namgang (River) to their tributaries and Upo Wetland where they have had devastating effects on environment. Nevertheless, there has been little research about nutrias in Korea. This study is to analyze the genetic structure of the nutria population in the Upo Wetland and identify the origin of the source populations. Twenty individuals from the Upo Wetland were genotyped using 25 microsatellite loci. When compared with another introduced population, that of the Blackwater Nation Wildlife Refuge in U.S., the Upo population contains considerable genetic variations. Tests for Hardy-Weinberg equilibrium and Bayesian clustering analysis suggest the Upo population is genetically structured and has at least two source populations. This preliminary study presents the need for further in-depth studies about this species which should combine genetic and ecological studies.

Functional Assessment of Jilnalnup Wetland by HGM (HGM을 이용한 질날늪 기능평가 연구)

  • Jin, Yi Hua;Li, Lan;Moon, Sang Kyun;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • Wetlands occupy an important ecological position on the earth, carrying out very important functions and roles both ecologically and hydrologically. However, due to past industrialization, not only wetland areas but also the biodiversity of organisms has severely decreased due to several artificial interferences and damage as wetlands began to be perceived simply as targets for development and reclamation. However in recent times, with the importance of wetlands coming to the fore, the assessment of the function and value of wetlands is being made for their wise use and systematic maintenance. Accordingly, this study targeted the Jilnal Wetlands located in Haman, Gyeongnam, and conducted a functional appraisal of this wetland using the modified HGM Model which was modified & developed appropriately for the actual conditions of our country. The result of its appraisal by selecting the Upo Wetland as the reference wetland, which is a criterion of the index, showed a comparatively positive functional index with 0.89 of the Upo Wetland average. This means that the Jilnal Wetland carrys out more than 89% of the functioning of the Upo Wetland. In this regard, it is thought that the Jilnal Wetland could carry out the wetland functioning equivalent to that of the Upo Wetland through a little more systematic management.

Holocene Paleosols of the Upo Wetland, Korea

  • Nahm, Wook-Hyun;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.167-168
    • /
    • 2003
  • The Upo wetland, the largest natural wetland in Korea, is located in Changnyeong-gun, Gyeongsannam Province ($35^{\circ}33'$ N, $128^{\circ}25'$ E), and 70 km upstream from the Nakdong River estuary. Unlike most other Korean wetlands that have been destroyed under the name of economic development, the Upo wetland has been able to preserve its precious ecosystem throughout the years. Thanks to increased public awareness about natural wetlands and environmental conservation, the Korean Ministry of Environment designated the Upo wetland an 'Ecological Conservation Area' on July 26th, 1997. On March 2nd of the following year, the Upo wetland (8.54 $\textrm{km}^2$) was designated a 'Protected Wetland' in accordance with the international Ramsar Treaty. A 4.49m long (from 9.73 to 5.24 m in altitude) UP-1 core ($35^{\circ}33'05"N$, $128^{\circ}25'17"E$), recovered in the marginal part of the Upo wetland, is divided into eight buried paleosol units of different ages on the basis of the abundance of color mottles and vertical color variations (Aslan et al., 1998). Radiocarbon datings suggested that the paleosol profile represent the last 5700 years. The entire section of the core was more or less subjected to pedogenetic processes, and shows very weak to moderate soil profile development. These Holocene paleosols are therefore regarded as synsedimentary soils of deluvium (deposits formed by floods) origin (Sycheva et al., 2003). Unit 1 to 5 paleosols are generally silt-rich and exhibit moderate profile development. The boundaries between the units are somewhat distinguishable, but not so clear cut. This is due to variable repeated combination of accumulation, denudation and soil forming processes within various periods. Mottle textures gradually decrease in abundance with increasing clay content in Unit 6, which results in weak profile development. The lower boundary of Unit 6 lies around about 2000 yrBP, the beginning of Subatlantic in Korea (Kim et al., 2001). Abrupt sediment textural change is detected in Unit 7, which is interpreted to indicate the human activities on the Upo wetland. Unit 8 represents the recent soil forming processes. The preliminary results of this ongoing study imply the primary factor for pedogenetic processes is the water table fluctuations related to the sedimentary textures like grain size distributions, and the geomorphological stability of the Upo wetland.o wetland.

  • PDF

Evaluation of Ecosystem Changes in Upo Wetland through Analysis of Benthic Macroinvertebrate Community Data (저서성 대형무척추동물 군집자료분석에 의한 우포늪의 생태계변화 평가)

  • Tae-Won Hwang;Seong-Woo Bae;Chun-Sik Yoon;Sung-Jin Hong;Seon-Woo Cheong
    • Journal of Environmental Science International
    • /
    • v.32 no.2
    • /
    • pp.99-120
    • /
    • 2023
  • The community structure of benthic macroinvertebrates in Upo wetland was identified, and the biological water quality was evaluated. In addition, through statistical analysis of current and literature data, ecological changes over time were evaluated for each wetland. Benthos were quantitatively collected in March, June, and September of 2020 and 2021, and 4 phyla, 5 classes, 16 orders, 42 families, 81 species and 3,406 individuals were identified. In the functional feeding group of Upo wetland, predators were dominant with 34 species (45.95%) and 1,504 individuals (41.84%). In the habitual dwelling group, sprawlers and swimmers showed the highest proportion in the number of species and individuals. Average biological indices in Mokpo and Upo were the highest and lowest, respectively, and it is considered that Mokpo maintains the healthy ecosystem for benthic macroinvertebrates. Community stability was high in Upo, and other wetlands are thought to be stabilizing. The ecological score of benthic macroinvertebrate community is considered to be more suitable index among three biological water quality evaluation indices for the environmental evaluation of Upo wetland. The evaluation results on changes in environmental quality showed that Upo has stable ecosystem without significant change, Mokpo and Sajipo have significant increases in some indices.

Estimation of micro-biota in the Upo wetland using eukaryotic barcode molecular markers

  • Park, Hyun-Chul;Bae, Chang-Hwan;Jun, Ju-Min;Kwak, Myoung-Hai
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2011
  • Biodiversity and the community composition of micro-eukaryotic organisms were investigated in the Upo wetland in Korea using molecular analysis. Molecular identification was performed using cytochrome oxidase I (COI) and small subunit ribosomal DNA (SSU rDNA). The genomic DNA was isolated directly from soil samples. The COI and SSU rDNA regions were amplified using universal primers and then sequenced after cloning. In a similarity search of the obtained sequences with BLAST in the Genbank database, the closely related sequences from NCBI were used to identify the amplified sequences. A total of six eukaryotic groups (Annelida, Arthropoda, Rotifera, Chlorophyta, Bacillariophyta, and Stramenopiles) with COI and six groups (Annelida, Arthropoda, Rotifera, Alveolata, Fungi, and Apicomplexa) with SSU rDNA genes were determined in the Upo wetland. Among 38 taxa in 20 genera, which are closely related to the amplified sequences, 10 genera (50%) were newly reported in Korea and five genera (25%) were shown to be distributed in the Upo wetland. This approach is applicable to the development of an efficient method for monitoring biodiversity without traditional taxonomic processes and is expected to produce more accurate results in depositing molecular barcode data in the near future.

The Sustainability Assessment Model for Upo Wetland as a Eco-Tourism Resources (생태관광자원으로서의 우포늪의 지속가능성 평가모형)

  • Yu, Jung Sub;Lee, Jae Dal
    • Journal of Environmental Policy
    • /
    • v.11 no.1
    • /
    • pp.3-25
    • /
    • 2012
  • To evaluate the sustainability assessment of eco-tourism resources, the assessment of Upo wetland was conducted by defining mathematical assessment models, by developing assessment indicators and by calculating the weight of main factors affecting on the sustainability through questionnaires analysis of 135 eco-tourism experts group. After that, the current sustainability grade level for Upo wetland was confirmed, and grade-level enhancement measures on each items were proposed. Although, this paper was focused on Upo wetland, but it is meaningful to prepare for the foundation in the sense of assessing scientifically and systematically the sustainability by providing concrete research model and method for the sustainability assessment of eco-tourism resources.

  • PDF

Changes of the Environmental Factors in Upo Wetland (우포늪의 수환경요인 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2009
  • In the Upo wetland, physico-chemical factors were observed during the period from March 2005 to December 2007 on a monthly basis. In the Upo wetland, water temperatures ranged $3.4{\sim}34.5^{\circ}C$. Conductivities were in the range of 133~806 ${\mu}S\;cm^{-1}$, which showed about 140 ${\mu}S\;cm^{-1}$ below in comparison with the precedent studies. The pH levels were between 6.7~9.1 with lower level in summertime. The dissolved oxygens were between 0.06~18.23 mg $L^{-1}$. COD ranged 4.9~20.8 mg $L^{-1}$, and showed a tendency to decrease every year. Nitrogen nutrients such as nitrate nitrogen ($NO_3-N$), ammonia nitrogen ($NH_3-N$) and total nitrogen (T-P) showed that they were generally decreased in comparison with those in the precedent studies. However the total nitrogen (T-N) is still considerably higher than the standard concentration level of eutrophication and algal blooming. Phosphate phosphorus ($PO_4-P$) and total phosphorus (T-P) were also shown as to be reduced considerably comparing with the values in the precedent studies. However, It was found out that total phosphorus (T-P) was dissolved over the criteria concentration of eutrophication. The average of TN/TP ratio was 18 in the Upo wetland, which proved that phosphorus was the limiting factor to the growth of phytoplankton in the Upo wetland. The chl-$\alpha$ was the highest in wintertime and the lowest in summertime, and especially in 2006 summer when the cyanobacterial bloom developed, it showed extremely high concentration.

The Improvement of Wetland Conservation Plan for Upo Wetland Protected Area (우포늪 습지보호지역 보전계획 개선방안)

  • Kim, Su-Ryeon;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.65-80
    • /
    • 2019
  • The Wetland Conservation Plan is used as a tool to set the management direction of wetland protected areas, and which is establishing a plan for the conservation, wise-use, and management based on wetland's condition. This study was conducted to establish a conservation plan considering the functions and management conditions of Upo wetland protected area. To this end, there are analyzed the current issues, plans and implementation status of Upo Wetland Conservation Plans in the past. The management elements to be considered in establishing the Wetland Conservation Plan were selected through prior research analysis and the priority of those elements was identified through the AHP. As a result, it was found that lack of considering the changes and performance evaluation of the existing plans in wetlands, conducting short-term projects related to maintenance original function of wetland, different management methods for wetland protected areas and other adjacent areas, lack of understanding and cooperation by stakeholders, inconsistencies in timing of the Conservation Plan and survey of wetland protected areas. In order to improve the problem, it needs to include the performance evaluation stage of establishing the conservation plan, strengthen cooperation of stakeholders and expertise, continuing of projects for wetlands' maintenance, priority of the project considering the management side, and to adjust the timing of plans to improve data availability.