• Title/Summary/Keyword: Uplink/Downlink

Search Result 200, Processing Time 0.022 seconds

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

Fairness-insured Aggressive Sub-channel Allocation and Efficient Power Allocation Algorithms to Optimize the Capacity of an IEEE 802.16e OFDMA/TDD Cellular System

  • Ko, Sang-Jun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.385-398
    • /
    • 2009
  • This paper aims to find a suitable solution to joint allocation of sub-channel and transmit power for multiple users in an IEEE 802.16e OFDMA/TDD cellular system. We propose the FASA (Fairness insured Aggressive Sub-channel Allocation) algorithm, which is a dynamic channel allocation algorithm that considers all of the users' channel state information conditionally in order to maximize throughput while taking into account fairness. A dynamic power allocation algorithm, i.e., an improved CHC algorithm, is also proposed in combination with the FASA algorithm. It collects the extra downlink transmit power and re-allocates it to other potential users. Simulation results show that the joint allocation scheme with the improved CHC power allocation algorithm provides an additional increase of sector throughput while simultaneously enhancing fairness. Four frames of time delay for CQI feedback and scheduling are considered. Furthermore, by addressing the difference between uplink and downlink scheduling in an IEEE 802.16e OFDMA TDD system, we can employ the uplink channel information directly via channel sounding, resulting in more accurate uplink dynamic resource allocation.

Uplink Interference Avoidance Scheme to Improve Femtocell Performance in Heterogeneous Cellular Networks (이기종 셀룰러 네트워크에서 펨토셀 성능향상을 위한 상향링크 간섭 회피 기법)

  • Kwon, Jung Hyoung;Sang, Young Jin;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.451-458
    • /
    • 2013
  • This paper proposes a cross-tier interference avoidance scheme to improve femtocell performance in single frequency heterogeneous cellular networks (SFHCN). The scheduled macrocell users located close femtocell base stations cause serious interference to those femtocells so that the performance of femtocell is dramatically deteriorated. To solve this problem, this paper proposes an interference avoidance scheme by reversing the uplink and downlink frames of such femtocells. After reversing the uplink and downlink frames, femtocell base station relays the macrocell user data as well as transmitting its own data. In the 1st relaying link, femtocell and macrocell users transmit their data respectively divided uplink frames and in the 2nd relaying link, femtocell base station transmit macrocell and femtocell data using a simultaneously superposition coding scheme. Computer simulation results confirm performance improvement of proposed scheme.

Performance Evaluation of Uplink ACK Packets Transmission IEEE 802.16e WiMAX Systems (IEEE 802.16e WiMAX 시스템에서 업링크 ACK 패킷 전송 성능평가)

  • Jun, Kyung-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.790-795
    • /
    • 2011
  • The need for broadband wireless data networks such as IEEE 802.16e WiMAX systems increases as a variety of wireless information devices like smart phones are adopted rapidly in everyday life. Since most of mobile applications employ TCP as their transport layer protocol, the performance improvement of TCP in WiMAX systems is crucial. This paper proposes an efficient method to transmit uplink piggyback ACK packets by exploiting the uplink packet buffering which happens because of the resource allocation scheme of the WiMAX systems. The proposed method can support not only the ACK filtering but also the merging of the piggyback ACK packets. As a result, the bandwidth reduction in the piggyback ACK packet transmission leads to the improvement of the downlink throughput. The simulation results show that the bandwidth for the ACK packets reduces more than 90%, and the downlink throughput increases at least 30%.

Power Saving Scheme by Distinguishing Traffic Patterns for Event-Driven IoT Applications

  • Luan, Shenji;Bao, Jianrong;Liu, Chao;Li, Jie;Zhu, Deqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1123-1140
    • /
    • 2019
  • Many Internet of Things (IoT) applications involving bursty traffic have emerged recently with event detection. A power management scheme qualified for uplink bursty traffic (PM-UBT) is proposed by distinguishing between bursty and general uplink traffic patterns in the IEEE 802.11 standard to balance energy consumption and uplink latency, especially for stations with limited power and constrained buffer size. The proposed PM-UBT allows a station to transmit an uplink bursty frame immediately regardless of the state. Only when the sleep timer expires can the station send uplink general traffic and receive all downlink frames from the access point. The optimization problem (OP) for PM-UBT is power consumption minimization under a constrained buffer size at the station. This OP can be solved effectively by the bisection method, which demonstrates a performance similar to that of exhaustive search but with less computational complexity. Simulation results show that when the frame arrival rate in a station is between 5 and 100 frame/second, PM-UBT can save approximately 5 mW to 30 mW of power compared with an existing power management scheme. Therefore, the proposed power management strategy can be used efficiently for delay-intolerant uplink traffic in event-driven IoT applications, such as health status monitoring and environmental surveillance.

Downlink-First Scheduling of Real-Time Voice Traffic in IEEE 802.11 Wireless LANs (무선랜 시스템에서의 하향 우선 실시간 음성 트래픽 스케줄링)

  • Jeong, Dong W.;Lee, Chae Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.150-156
    • /
    • 2003
  • The IEEE 802.11 MAC (Media Access Control) Protocol supports two modes of operation, a random access mode for nonreal-time data applications processed by Distributed Coordinated Function (DCF), and a polling mode for real-time applications served by Point Coordinated Function (PCF). It is known that the standard IEEE 802.11 is insufficient to serve real-time traffic. To provide Quality of Service (QoS) of real-time traffic, we propose the Downlink-first scheduling with Earliest Due Date (EDD) in Contention Free Period (CFP) with suitable admission control. The capacity and deadline violation probability of the proposed system is analyzed and compared to the standard pair system of downlink and uplink. Analytical and simulation results show that the proposed scheme is remarkably efficient in view of the deadline violation probability.

Performance Analysis of Nonlinear Satellite Communication System in the CCI And ACI Interference Channel (간섭채널에서 비선형 위성 통신 시스템의 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.166-173
    • /
    • 2004
  • Satellite communication system uses a high non-linear HPA(high power amplifiers) in the earth station and satellite transponder. Therefore, it is important to consider the nonlinear effect of HPA on the communication system. In this paper, we find the variation of power spectrum density by nonlinearity HPA and the change of harmonic component according to IBO (input back-off). When the BPSK is used for satellite communication system, we analyze BER performance including the external co-channel interference (CCI) and the adjacent channel interference (ACI) resulting from the HPA nonlinearity. BER degrades as ACI magnitude grows up when the uplink SNR, uplink SIR (signal to co-channel interference power ratio) and downlink SIR are constant at some level. In case there is only non-linear HPA in the satellite, it is shown that BER considerably depends on the ACI magnitude ACI. When there are two non-linear HPAs in the both earth station and satellite, much BER degradation results from the CCI and ACI.

Smart antenna algorithm for CDMA downlink beam-forming (CDMA 하향링크의 빔 성형을 위한 스마트 안테나 알고리즘)

  • Ahn Chijun;Hong Youngmi;Jin Younghwan;Ahn Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.603-610
    • /
    • 2005
  • Beam-forming method based on the estimated channel information at the base station degrade the performance mismatching directional vector in case of systems which Frequency Division Duplex (FDD) center frequency of uplink and downlink are different. Also blind estimation technique which is to obtain directional vector of reverse link through received signal has disadvantage of hardware complexity increase. To solve these problems, in present paper, a smart antenna algorithm which is to improve the beam-forming complexity increase due to user number by appling the spatial fourier transform to be able to beam- forming toward a wanted direction through adjusting a obtained uplink weight function by estimating Angle-of-Arrival (AoA) to the competable form at the downlink is proposed. The proposed algorithm is integrated to the CDMA downlink transmitter and simulations are performed to confirm the performance as frame error rate at the receiver. As a result, the beam forming effect is confirmed and the performance gain with the proposed algorithm is comparable to ordinary smart antenna system.

Design and Implementation of the module that generate Sync-signal for Controlling Tx/Rx Antenna of 2.3-2.7GHz WiMAX TDD Repeater (2.3-2.7GHz WiMAX용 TDD 중계기의 송수신 안테나 제어를 위한 동기 신호 생성 모듈 설계 및 구현)

  • Woo, Sang-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.60-63
    • /
    • 2009
  • In this paper, Designed and implemented about module that generate division signal for uplink section and downlink section for controlling Tx/Rx antenna of 2.3-2.7GHz WiMAX TDD repeater. It is consisted of RF block and Baseband block, and because function of this module is that synchronize with WiMAX signal and create division signal for uplink section and downlink section, this module was designed only received path. And because of manufacturing of most RF block by one chip, this module could minimize area. And in baseband block, used the WiMAX Modem to detect Preamble and DL-MAP information of WiMAX signal. This design can process about 2.3-2.7GHz WiMAX.