• Title/Summary/Keyword: Upflow Anaerobic Sludge Blanket Reactor

Search Result 49, Processing Time 0.022 seconds

Increased Microbial Resistance to Toxic Wastewater by Sludge Granulation In Upflow Anaerobic Sludge Blanket Reactor

  • Bae, Jin-Woo;Rhee, Sung-Keun;Kim, In S.;Hyun, Seung-Hoon;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.901-908
    • /
    • 2002
  • The relationship between the layered structure of granules in UASB reactors and microbial resistance to toxicity was investigated using disintegrated granules. When no toxic materials were added to the media, the intact and disintegrated granules exhibited almost the same ability to decrease COD and to produce methane. However, when metal ions and organic toxic chemicals were added to a synthetic wastewater, he intact granules were found to be more resistant to toxicity than the disintegrated granules, as determined by the methane production. The difference in resistance between the intact and disintegrated granules was maximal, with toxicant concentrations ranging from 0.5 mM to 2 mM for trichloroethylene with toluene and 5 mM to 20 mM for metal ions (copper, nickel, zinc. chromium, and cadmium ions). The augmented COD removal rate by granulation compared to disintegrated granules was also measured in the treatment of synthetic and real wastewaters; synthetic wastewater, $-2.6\%$; municipal wastewater, $2.8\%$; swine wastewater, $6.4\%$; food wastewater, $25.0\%$; dye works wastewater, $42.9\%$; and landfill leachate, $61.8\%$. Continuous reactor operation also demonstrated that the granules in the UASB reactor were helpful in treating toxic wastewater, such as landfill leachate.

Activity of Methanogens in the High Rate Anaerobic Digestion of Swine Wastewater Containing High Ammonia (고농도 암모니아를 함유한 돈사폐수의 고율혐기성 소화시 메탄균의 활성연구)

  • Oh, Sae-Eun;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.981-987
    • /
    • 2000
  • Upflow anaerobic sludge blanket(UASB) reactor was operated for treating swine wastewater containing high ammonia nitrogen to assess their performance and toxicity of free ammonia concentration. In the reactor, chemical oxygen demand(COD) removed about 70% at $2.6kgCOD/m^3.day$ of organic loading rate(OLR) and 3 days of hydraulic retention time (HRT), while it was decreased when OLR and HRT was maintained $7kg\;COD/m^3.day$ and 2 days, respectively. Also UASB reactor was evaluated the activity of methane producing bacteria(MPB) according to change of free ammonia concentrations, MPB activity of applied sludge in the 500 and $1000mg-N/{\ell}$ of free ammonia concentration was inhibited by 4% and 40%, respectively. This clearly showed that free ammonia concentration less than $500mg-N/{\ell}$ showed no inhibition to MPB in anaerobic treatment of organics, UASB reactor was stabilized easily less than $1000mgVSS/{\ell}$ due to degradation of organic solids by the high activities of anaerobes.

  • PDF

Fouling Characteristics in Submerged Membrane System of Two-Phase Anaerobic Reactor for Piggery Wastewater Treatment (축산폐수 처리를 위한 막결합형 이상 혐기성 반응조에서 여과막 저항특성)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.523-533
    • /
    • 2000
  • A two-phase anaerobic reactor with submerged membrane system was developed for increasing acidogen concentration and methane recovery. The membrane used was mixed esters of cellulose of $0.5{\mu}m$ pore size and $0.8m^2$ of effective surface area. The methanogenic reactor comprised of UASB (Upflow Anaerobic Sludge Blanket) and AF (Anaerobic Filter). COD removal efficiency was 70~80% and the methane content in the biogas increased up to 90% for the submerged membrane system in the anaerobic reactor. As the cake resistance of membrane caused a serious problem, stainless steal prefilters (40, 53, $63{\mu}m$) and air backwashing methods were applied to minimize the cake resistance effectively. Among the tested prefilters. the $63{\mu}m$ prefilter showed the best performance for reduction of cake resistance and a successful long-tern operation. By cleaning with alkali first and acidic solution later. the permeate flux decreased by long term operation was recovered to 89% of that with a new membrane.

  • PDF

Effect of Effluent Recirculation and Internal Return on the Performance of UASB Process (유출수 재순환 및 내부반송이 UASB 반응조 운전효율에 미치는 영향)

  • Kim, Jin-Hyok;Han, Seong-Kuk;Kwon, Oh-Hoon;Yoon, Kyung-Jin;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2011
  • Dumping of wastes at sea will be strongly prohibited from 2012 by London Dumping Convention. So, finding the method for treatment of food waste at ground is needed urgently. The solution for above mentioned problem is the resource development from food waste leachate by using Upflow Anaerobic Sludge Blanket (UASB) process. In this research, we try to find out the effect of effluent recirculation and internal return influence on organic removal efficiency and biogas production. Laboratory investigation was conducted for 25 days with only internal recycling, and then, effluent recirculation was performed. As the result of experiments, the organic removal efficiency was above 90%, and the content of methane was 78~80% during operating time. Also, when UASB reactor was operated to over the 3 Q effluent recirculation, there was not 1 N-NaOH consumption any more, therethrough the experiment was economically and stably carried out.

Influence of hydraulic retention time on biogas production during leachate treatment

  • Baati, Souaad;Benyoucef, Fatima;Makan, Abdelhadi;El Bouadili, Abdelaziz;El Ghmari, Abderrahmene
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.288-293
    • /
    • 2018
  • The main objective of this study is to investigate the influence of hydraulic retention time (HRT) on biogas production during leachate treatment using an anaerobic reactor type Upflow Anaerobic Sludge Blanket. For this purpose, four HRTs ranging from 12 to 48 h were experienced. The obtained results showed that higher amount of biogas could be produced during longer HRTs. However, HRTs longer than 48 h could not affect clearly the biogas generation and considered as unnecessary given the small additional amount of biogas produced during the degradation process. A volume of $0.434L/L_{leachate}/d$ was achieved during the treatment with a HRT of 48 h. The higher biogas production, the smaller chemical oxygen demand (COD) values achieved. Besides, COD removal and biogas production positively correlate, showing that the active biomass has degraded effectively the organic load to produce biogas. Moreover, all the analyzed physicochemical parameters have experienced a decrease after 48 h except for the pH, which increased to approximately neutral value. More precisely, a decrease of 93.8%, 89.7%, 95%, 70%, 77%, and 84.4% was recorded for COD, electrical conductivity, total suspended solid, turbidity, $NH_4{^+}-N$, and $NO_3{^-}-N$, respectively.

Behaviors of Pollutants and Microorganisms in an Anaerobic Digestion of Propionate Containing High Ammonia Nitrogen Level (고농도 암모니아성 질소를 함유한 프로피온산의 혐기성 분해시 오염물질 및 미생물 거동)

  • Lee, Chae-Young;Kim, Dae-Sung;Ahn, Won-Sik;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.126-137
    • /
    • 2006
  • Behaviors of simple organic compound and granular sludge in an upflow anaerobic sludge blanket (UASB) reactor treating propionate at high ammonia nitrogen levels were investigated for 12 months. The UASB reactor achieved about 80% removal of chemical oxygen demand (COD) at ammonia nitrogen concentration up to 6000 mg-N/L. At higher concentration of ammonia nitrogen, the propionate in the effluent increased whereas the acetate was very low. At ammonia nitrogen concentration of 8000 mg-N/L, the volatile suspended solids (VSS) increased sharply due probably to the decrease of the content of extracellular polymer (ECP) although methane production was very low. The specific methanogenic activity (SMA) using formate, acetate, and propionate as substrate to granules decreased as ammonia nitrogen concentration increased. The ammonia nitrogen concentration $I^{50}$, causing 50% inhibition of SMA were 2666, 4778 and 5572 mg-N/L, respectively. The kinetic coefficients of ammonia inhibition using formate, acetate, and propionate as substrate were 3.279, 0.999 and 0.609, respectively. The SMA using formate was severely affected by ammonia nitrogen than those using acetate and propionate. This result indicated that the hydrogenotrophic methanogens was most affected by ammonia nitrogen. Granules were mainly composed of microcolonies of methanothrix-like bacteria resembling bamboo-shape, and several other microcolonies including propionate degrader with juxtapositioned syntrophic associations between the hydrogen-producing acetogens and hydrogen-consuming methanogens.

  • PDF

Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater (페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자)

  • Hong, Sung-Dong;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.797-806
    • /
    • 2000
  • The objectives were to compare the biodegradable threshold concentrations of phenol with the different composition of the influent carbon source and examine the SMA (Specific Methanogenic Activity)and the possibility of simultaneous removal of high-strength organics and nitrogen compounds in UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) process. The results showed that UASB reactors were efficient to remove phenol and phenol + glucose from synthetic wastewater. At phenol conc, of 600 mg/L and SCOD conc. of 2100 mg/L in UASB reactor(with only phenol as substrate), the removal efficiencies of phenol and SCOD were over 99% and 93% respectively, under MLVSS of 20 g. The activity of microorganism was $0.112g\;phenol/g\;VSS{\cdot}d$, $0.351g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.115L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. At phenol conc. of 760 mg/L and SCOD conc. of 4300 mg/L in UASB reactor( with phenol + glucose as substrates), the removal efficiencies of phenol and of SCOD were over 99% and 90% respectively, under MLVSS of 20 g. The activity of microoganism was $0.135g\;phenol/g\;VSS{\cdot}d$, $0.696g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.257L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. Serum bottle test showed that the activity of granule was inhibited over 1600 mg/L phenol conc, and denitrification and methanogenesis simultaneously took place in UASB granules under co-substrates conditions. PBR reactor packed with cilium type media, was efficient in nitrification. In condition of $0.038kg\;NH_4-N/m^3-media{\cdot}d$. 10~12 mg/L phenol conc. and 200~500 mg/L SCOD conc., nitrification efficiency was over 90% and phenol removal efficiency was over 98%.

  • PDF

Biodegradation of a Reactive Dye, Remazol Black B in a UASB Reactor (UASB 반응기를 이용한 반응성 염료 Remazol Black B의 분해)

  • Oh, You-Kwan;Lee, Sung-Ho;Kim, Hyo-Seob;Kim, Yu-Jin;Lee, Sang-Joon;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.688-695
    • /
    • 1999
  • Biodegradation of the reactive dye, Remazol Black B was investigated in an upflow anaerobic sludge blanket(UASB) reactor. Important parameters studied include dye concentration(20-60 mg/L), glucose concentration as a co-substrate(1,000-3,000 mg/L), hydraulic retention time(3-24 hr), and influent pH(6.0-8.0). Under most conditions tested, the molecules of Black B were degraded readily and completely according to HPLC chromatograms. However, the color removal efficiency based on spectroscopic measurement was always approximately 75%. This suggests that the degradation products have some color intensity corresponding to 25% of the original dye molecules. The maximum influent dye concentration which satisfies the legal discharge limit of color intensity of 400 ADMI was 13 mg/L. and the highest removal rate at this dye concentration was 104 mg/L${\cdot}$day.

  • PDF

Effect of Operating Conditions of UASB Reactor on Biodegradation of C. I. Reactive Blue 114 (C. I. Reactive Blue 114의 분해에 미치는 혐기성 UASB 반응기 운전조건의 영향)

  • Oh, You-Kwan;Lee, Sung-Ho;Kim, Hyo-Seob;Park, Tae-Joo;Park, Sung-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.619-627
    • /
    • 2000
  • Biodegradation of the C. I. Reactive Blue 114 was investigated in an upflow anaerobic sludge blanket (UASB) reactor. Important parameters studied include dye concentration, the kind and concentration of carbon source, hydraulic retention time (HRT), and influent pH. Glucose was found to be a better co-substrate than the mixture of volatile fatty acids (VFAs), although its concentration did not affect dye removal efficiency in the range of $1000{\sim}3000mg/{\ell}$. When HRT increased from 6 hr to 24 hr, dye removal efficiency increased up to 12 hr and remained almost constant thereafter at about 40%. When influent pH was varied in the range of 6.0~8.0, the effluent pH was varied in the range of 6.8~7.5 with maximum efficiency at pH 7.0. The highest dye removal rate obtained was $52mg/{\ell}{\cdot}day$, while the maximum dye load to meet the discharge limit of color intensity was estimated to be $46mg/{\ell}{\cdot}day$ at HRT of 12 hr and an influent glucose concentration of $2200mg/{\ell}$.

  • PDF