• Title/Summary/Keyword: Unwrapping

Search Result 90, Processing Time 0.019 seconds

A Study on the Compressible Fluid Leak Position Detection of Buried Pipelines (매설배관 내의 압축성 유체 누설 위치 검출에 관한 연구)

  • Lee, Jeong-Han;Kim, Hyung-Jin;Yoon, Doo-Byung;Park, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.40-49
    • /
    • 2016
  • When a leak occurs in the buried pipelines, The leak locations are able to detected by using the vibration sensors. These leak detection system, intended for incompressible fluid, such as water, are of using the wave propagation velocity and a signal arrival time delay between the sensors. In this paper, to develop a leak location detection system for a compressible fluid such as gas, the conventional detection methods have been studied, improved, and verified through the experiment using the compressed air. It confirmed that it is possible to detect the leak location for compressible fluid in the buried pipelines and to be applicable to the development of a leak location detection system in buried pipelines for gas.

Research about ESPI System Algorithm Development that Use Modulating Laser (Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구)

  • Kim, Seong-Jong;Kang, Young-June;Park, Nak-Kyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

Development of MR Compatible Coaxial-slot Antenna for Microwave Hyperthermia (초고주파 가열치료를 위한 MR 호환 동축 슬롯 안테나의 개발)

  • Kim, T.H.;Chun, S.I.;Han, Y.H.;Kim, D.H.;Mun, C.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • MR compatible coaxial-slot antenna for microwave hyperthermia was developed while its structure and size of each part were determined by computer simulation using finite element method(FEM). Its local heating performance was evaluated using tissue-mimic phantom and swine muscles. 2% agarose gel mixed with 6mM/$\ell$ $MnCl_2$ as a biological tissue-mimic phantom was heated by the proposed antenna driven by a 2.45GHz microwave generator. The temperature changes of the phantom were monitored using multi-channel digital thermometer at the distance of 0mm, 5mm, 10mm and 20mm from the tip center of the antenna. Also muscle tissue of swine was heated for 2 and 5minutes with 50W and 30W of microwave generator powers, respectively, to evaluate the local heating performance of the antenna. MRI compatibility was also verified by acquiring MR images and MR temperature map. MR signals were acquired from the agarose gel phantom using $T2^*$ GRE sequence with 1.5T clinical MRI scanner(Signa Echospeed, GE, Milwaukee, WI, U.S.A.) at Pusan Paik Hospital and were transferred to PC in order to reconstruct MR images and temperature map using proton resonance frequency(PRF) method and laboratory-developed phase unwrapping algorithm. Authors found that it has no severe distortion due to the antenna inserted into the phantom. Finally, we can conclude that the suggested coaxial-slot antenna has an excellent local heating performance for both of tissue-mimic phantom and swine muscle, and it is compatible to 1.5T MRI scanner.

Application of DMD for Phase Shifting in Moire Topology (DMD를 이용한 위상천이 모아레 3차원 형상 측정)

  • Jeong, Kyung-Seok;Jung, Yong-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2457-2462
    • /
    • 2011
  • The need for rapid and accurate measurement of 3-dimensional objects is increasing due to the paradigmatic shift in manufacturing from mass production to small batch production. A three dimensional measurement technique which can provide the dimensional information of the object manufactured or to be manufactured has been developed. This method is based on phase shifting moire topology. Digital-Micromirror-Device (DMD) has been used in generating phase shifting moire fringes. And the mechanically moving optical components used for phase shifting, which might result in measurement errors, have been replaced by the DMD. Inherent $2\pi$-ambiguity problem, occurring in the calculation of phase from the light intensity distribution due to the nature of arctangent function, has been overcome by adapting the phase unwrapping method. The advantage of this technique is the easy change of the range and the resolution of the measurement by simply changing the computer generated grid pattern with the appropriate combination of projection lens of various focal length.

Analysis of Surface Displacement of Glaciers and Sea Ice Around Canisteo Peninsula, West Antarctica, by Using 4-pass DInSAR Technique (4-pass DInSAR 기법을 이용한 서남극 Canisteo 반도 주변 빙하와 해빙의 표면 변위 해석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.535-542
    • /
    • 2011
  • We extracted a surface displacement map of Canisteo Peninsula and the surrounding area in West Antarctica by applying 4-pass DInSAR technique to two ERS-1/2 tandem pairs and analyzed the surface displacement of glaciers and sea ice. In the displacement map, glaciers showed fast motion pushing the adjoining land-fast sea ice which has the displacement in the same direction as the glacier. Cosgrove ice shelf showed large displacement pushing the adjoining land-fast sea ice as well. Some sea ice indicated the displacement that is opposite to the land-fast sea ice. This was because the type of the sea ice is drift ice that is affected by ocean current. Therefore, we could confirmed the boundary between land-fast sea ice and drift ice. It was difficult to distinguish ice shelf from ice sheet because they showed similarities both in brightness of the SAR images and in fringe rates of the interferograms. However, a boundary between fast-moving ice shelf and stable ice sheet was easily confirmed in the displacement map after the phase unwrapping process.

Out-of-Plane Deformation Measurement of TPS in Vehicle Using ESPI (ESPI를 이용한 자동차 TPS 면외변형 계측)

  • Han, Sang-Kil;Ham, Hyo-Shick;Ham, Sang-Hyun;Lee, Jong-Hwang;Jung, Won-Wook;Lee, Chang-Hee;Lee, Sang-Bong;Choi, Sung-Eul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.423-428
    • /
    • 2010
  • In this paper, we analyzed the characteristics of thermal deformation of the TPS which is a core part of engine in vehicle by measuring out-of-plane deformation using ESP!. Inspection area of a test piece was minimized to 5 cm by 5 cm by using a high resolution CCD and a zoom lens. 4-step phase shifting method was used along with phase unwrapping algorithm to get a continuous phase map, configurations and deformations were displayed as 3D images. When heating the test pieces while maintaining the temperature at about $70^{\circ}C$, the out-of-plane deformations were measured. The results showed that a test piece with longer distance traveled tends to show larger thermal deformation, we could observes a convex shaped deformation on the surface. The inner defect sample, we could monitor discontinuous pattern phase map, and a concave shaped deformation on the surface.

Frequency-Wave Number Method for the Automated Calculation of the Phase Velocities from the SASW Measurements (SASW실험 분산곡선의 자동화 계산을 위한 주파수-파수 기법)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.299-310
    • /
    • 2003
  • In the evaluation of the subgrade stiffness structure by the SASW method, the calculation of the phase velocities is the important task controlling the reliability of the result. The interpretation of the phase spectrum should precede the phase-velocity calculation in the current practice of the SASW method. The difficulty involved in the interpretation prohibited the SASW method from being spread over to the industry. This study proposed a new method called the frequency-wave number technique, which is based on the frequency-wave number relationship of the surface wave in the multi-layered system. The frequency-wave number technique eliminates the expertise in the interpretation of the phase spectrum, automates the phase-velocity calculation and expedites the determination of the phase-velocity dispersion curve. To verify the validity of the proposed frequency-wave number method, the transfer function determined from the numerical simulation of the SASW measurements was used fir the calculation of the automatic calculation of the phase velocities and compared with the phase velocities by WinSASW employing the phase-unwrapping method. Also, the proposed method was applied to the real SASW measurements performed at$\bigcirc$$\bigcirc$area in GyeongGi-Do to see how the proposed method works with the real measurements.

Using a Refined SBAS Algorithm to Determine Surface Deformation in the Long Valley Caldera and Its Surroundings from 2003-2010

  • Lee, Won-Jin;Lu, Zhong;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.101-115
    • /
    • 2018
  • The Long Valley area and its surroundings are part of a major volcano system where inflation occurred in the resurgent dome in the 1990s. We used ENVISAT data to monitor surface deformation of the Long Valley area and its surroundings after the inflation, from 2003-2010. To retrieve the time series of the deformation, we applied the refined Small BAseline Subset (SBAS) algorithm which is improved using an iterative approach to minimize unwrapping error. Moreover, ascending and descending data were used to decompose the horizontal and vertical deformation in detail. To confirm refined SBAS results, we used GPS dataset. The InSAR errors are estimated as ${\pm}1.0mm/yr$ and ${\pm}0.8mm/yr$ from ascending and descending tracks, respectively. Compare to the previous study of 1990s over the Long Valley and its surroundings, Paoha Island and CASA geothermal area still subside. The deformation pattern in the Long Valley area during the study period (2003-2010) went through both subsidence (2003-2007) and slow uplift(2007-2010) episodes. Our research also shows no deformation signal near McGee Creek. Our study provided a better understanding of the surface changes of the indicators in the 1990s and 2000s.

HK Curvature Descriptor-Based Surface Registration Method Between 3D Measurement Data and CT Data for Patient-to-CT Coordinate Matching of Image-Guided Surgery (영상 유도 수술의 환자 및 CT 데이터 좌표계 정렬을 위한 HK 곡률 기술자 기반 표면 정합 방법)

  • Kwon, Ki-Hoon;Lee, Seung-Hyun;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.

Effective Gray-white Matter Segmentation Method based on Physical Contrast Enhancement in an MR Brain Images (MR 뇌 영상에서 물리기반 영상 개선 작업을 통한 효율적인 회백질 경계 검출 방법)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.275-282
    • /
    • 2013
  • In medical image processing field, object recognition is usually carried out by computerized processing of various input information such as brightness, shape, and pattern. If the information mentioned does not make sense, however, many limitations could occur with object recognition during computer processing. Therefore, this paper suggests effective object recognition method based on the magnetic resonance (MR) theory to resolve the basic limitations in computer processing. We propose the efficient method of robust gray-white matter segmentation by texture analysis through the Susceptibility Weighted Imaging (SWI) for contrast enhancement. As a result, an average area difference of 5.2%, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.