DOI QR코드

DOI QR Code

Analysis of Surface Displacement of Glaciers and Sea Ice Around Canisteo Peninsula, West Antarctica, by Using 4-pass DInSAR Technique

4-pass DInSAR 기법을 이용한 서남극 Canisteo 반도 주변 빙하와 해빙의 표면 변위 해석

  • Received : 2011.09.10
  • Accepted : 2011.10.21
  • Published : 2011.10.31

Abstract

We extracted a surface displacement map of Canisteo Peninsula and the surrounding area in West Antarctica by applying 4-pass DInSAR technique to two ERS-1/2 tandem pairs and analyzed the surface displacement of glaciers and sea ice. In the displacement map, glaciers showed fast motion pushing the adjoining land-fast sea ice which has the displacement in the same direction as the glacier. Cosgrove ice shelf showed large displacement pushing the adjoining land-fast sea ice as well. Some sea ice indicated the displacement that is opposite to the land-fast sea ice. This was because the type of the sea ice is drift ice that is affected by ocean current. Therefore, we could confirmed the boundary between land-fast sea ice and drift ice. It was difficult to distinguish ice shelf from ice sheet because they showed similarities both in brightness of the SAR images and in fringe rates of the interferograms. However, a boundary between fast-moving ice shelf and stable ice sheet was easily confirmed in the displacement map after the phase unwrapping process.

본 연구에서는 서남극 Canisteo 반도와 그 주변 지역이 촬영된 2쌍의 ERS-1/2 tandem pair에 4-pass DInSAR 기법을 적용하여 표면 변위도를 생성하였고, 빙하와 해빙의 표면 변위를 해석하였다. 표면 변위도에서 빙하는 매우 빠른 움직임을 나타냈으며 인접해 있는 정착빙을 밀어내어 정착빙 표면에서는 빙하와 같은 방향의 변위가 관찰되었다. Cosgrove 빙붕도 큰 변위를 나타냈으며, 인접해 있는 정착빙을 밀어내는 것이 관찰되었다. 일부 해빙은 정착빙과 반대 방향의 움직임을 보였다. 이는 해빙이 해류에 영향을 받는 유빙이기 때문이며, 이로부터 정착빙과 유빙의 경계를 확인할 수 있었다. 빙붕과 빙상의 표면은 SAR영상에서 유사한 밝기를 보이며, 간섭도에서도 비슷한 정도의 간섭띠 변화율을 나타내 두 빙체를 쉽게 구분 할 수 없었다. 그러나 움직임이 큰 빙붕과 변위가 거의 없이 안정적인 빙상의 경계를 절대위상복원 후 생성한 변위도를 통해서 쉽게 확인할 수 있었다.

Keywords

References

  1. 윤근원, 김상완, 민경덕, 원중선, 2001. DEM 정밀도 향상을 위한 2-pass DInSAR 기법의 적용, 대한원격탐사학회지, 17(3): 231-242.
  2. 한향선, 이훈열, 2007. 북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교연구, 대한원격탐사학회지, 23(6): 507-520. https://doi.org/10.7780/kjrs.2007.23.6.507
  3. Chini, M., S. Atzori, E. Trasatti, C. Bignami, C. Kyriakopoulos, C. Tolomei, and S. Stramondo, 2010. The May 12, 2008, (Mw 7.9) Sichuan earthquake (China): Multiframe ALOS-PALSAR DInSAR analysis of coseismic deformation, IEEE Geoscience and Remote Sensing Letters, 7(2): 266-270. https://doi.org/10.1109/LGRS.2009.2032564
  4. Goldstein, R.M., H.A. Zebker, and C.L. Werner, 1988. Satellite radar interferometry: Twodimensional phase unwrapping, Radio Science, 23(4): 713-720. https://doi.org/10.1029/RS023i004p00713
  5. Hayakawa, Y.S., T. Oguchi, and Z. Lin, 2008. Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3, Geophysical Research Letters, 35, L17404, doi:10.1029/2008GL035036.
  6. Howat, I.M., I. Joughin, and T.A. Scambos, 2007. Rapid changes in ice discharge from Greenland outlet glaciers, Science, 315(5818): 1559-1561. https://doi.org/10.1126/science.1138478
  7. Jezek, K.C., 1999. Glaciological properties of the Antarctic ice sheet from Radarsat-1 synthetic aperture radar imagery, Annals of Glaciology, 29: 286-290. https://doi.org/10.3189/172756499781820969
  8. Jezek, K.C., H. Liu, Z. Zhao, and B. Li, 1999. Improving a digital elevation model of Antarctica using radar remote sensing data and GIS techniques, Polar Geography, 23(3): 185-200. https://doi.org/10.1080/10889379909377675
  9. Jiang, L., H. Lin, J. Ma, B. Kong, and Y. Wang, 2011. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study, Remote Sensing of Environment, 115(2): 257-268. https://doi.org/10.1016/j.rse.2010.08.008
  10. Kenyi, L.W. and V. Kaufmann, 2003. Estimation of rock glacier surface deformation using SAR interferometry data, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1512-1515. https://doi.org/10.1109/TGRS.2003.811996
  11. Kwoun, O., S. Baek, H. Lee, H. Sohn, U. Han, and C.K. Shum, 2005. Topography, vertical and horizontal deformation in the Sulzberger ice shelf, West Antarctica using InSAR, Korean Journal of Remote Sensing, 21(1): 73-81. https://doi.org/10.7780/kjrs.2005.21.1.73
  12. Liu, H., C.K. Jezek, and B. Li, 1999. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach, Journal of Geophysical Research, 104(B10): 23199-23213. https://doi.org/10.1029/1999JB900224
  13. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993. The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364(8): 138-142. https://doi.org/10.1038/364138a0
  14. Moholdt, G., C. Nurth, J.O. Hagen, and J. Kohler, 2010. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry, Remote Sensing of Environment, 114(11): 2756-2767. https://doi.org/10.1016/j.rse.2010.06.008
  15. Pavez, A., D. Remy, S. Bonvalot, M. Diament, G. Gabalda, J-L. Froger, P. Julien, D. Legrand, and D. Moisset, 2006. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring, Remote Sensing of Environment, 100(3): 307-320. https://doi.org/10.1016/j.rse.2005.10.013
  16. Pipia, L., X. Fabregas, A. Aguasca, C. Lopez-Martinez, S. Duque, J.J. Mallorqui, and J. Marturia, 2009. Polarimetric differential SAR interferometry: First results with groundbased measurements, IEEE Geoscience and Remote Sensing Letters, 6(1): 167-171. https://doi.org/10.1109/LGRS.2008.2009007
  17. Rignot, E., 1998. Fast recession of a West Antarctic glacier, Science, 281(5376): 549-551. https://doi.org/10.1126/science.281.5376.549
  18. Rignot, E., 2002. Ice-shelf changes in Pine Island Bay, Antarctica, 1947-2000, Journal of Glaciology, 48(161): 247-256. https://doi.org/10.3189/172756502781831386
  19. Rignot, E., 2008. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophysical Research Letters, 35, L12505, doi:10.1029/2008GL033365.
  20. Rignot, E., D.G. Vaughan, M. Schmeltz, T. Dupont, and D. MacAyeal, 2002. Acceleration of Pine Island and Thwaites glaciers, West Antarctica, Annals of Glaciology, 34(1): 189-194. https://doi.org/10.3189/172756402781817950
  21. Rignot, E., G. Casassa, S. Gogineni, P. Kanagaratnam, W. Krabill, H. Pritchard, A. Rivera, R. Thomas, J. Turner, and D. Vaughan, 2005. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula, Geophysical Research Letters, 32, L07502, doi: 10.1029/2004GL021947.
  22. Slobbe, D.C., R.C. Lindenbergh, and P. Ditmar, 2008. Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints, Remote Sensing of Environment, 112(12): 4204-4213. https://doi.org/10.1016/j.rse.2008.07.004
  23. Stramondo, S., M. Chini, C. Bignami, S. Salvi, and S. Atzori, 2011. X-, C-, and L-band DInSAR investigation of the April 6, 2009, Abruzzi earthquake, IEEE Geoscience and Remote Sensing Letters, 8(1): 49-53. https://doi.org/10.1109/LGRS.2010.2051015
  24. Strozzi, T., G.H. Gudmundsson, U. Wegmuller, 2002. Estimation of the surface displacement of Swiss alpine glaciers using satellite radar interferometry, Proc. of EARSeL-LISSIGWorkshop Observing our Cryosphere form Space, Bern, Mar. 11-Mar. 13, EARSeL eProceedings no. 2, pp. 3-7.
  25. Thomas, R., E. Rignot, G. Casassa, P. Kanagaratnam, C. Acuna, T. Akins, H. Brecher, E. Federick, P. Gogineni, W. Krabill, S. Manizade, H. Ramamoorthy, A. Rivera, R. Russell, J. Sonntag, R. Swift, J. Yungel, and J. Zwally, 2004. Accelerated sea-level rise from West Antarctica, Science, 306(5694): 255-258. https://doi.org/10.1126/science.1099650
  26. Tomas, R., Y. Márquez, J.M. Lopez-Sanchez, J. Delgado, P. Blanco, J.J. Mallorqui, M. Martínez, G. Herrera, and J. Mulas, 2005. Mapping ground subsidence induced by aquifer overexploitation using advanced differential SAR interferometry: Vega Media of the Segura River (SE Spain) case study, Remote Sensing of Environment, 98(2): 269-283. https://doi.org/10.1016/j.rse.2005.08.003
  27. Yen, J., K. Chen, C. Chang, and W. Boerner, 2008. Evaluation of earthquake potential and surface deformation by differential interferometry, Remote Sensing of Environment, 112(3): 782-795. https://doi.org/10.1016/j.rse.2007.06.012
  28. Zebker, H.A., P.A. Rosen, R.M. Goldstein, A. Gabriel, and C.L. Werner, 1994. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake, Journal of Geophysical Research, 99(B10): 19617-19634. https://doi.org/10.1029/94JB01179

Cited by

  1. Estimation of Annual Variation of Ice Extent and Flow Velocity of Campbell Glacier in East Antarctica Using COSMO-SkyMed SAR Images vol.29, pp.1, 2013, https://doi.org/10.7780/kjrs.2013.29.1.5
  2. Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution vol.29, pp.4, 2013, https://doi.org/10.7780/kjrs.2013.29.4.4
  3. Analysis of Sea Route to the Jangbogo Antarctic Research Station by using Passive Microwave Sea Ice Concentration Data vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.12
  4. Analysis of Annual Variability of Landfast Sea Ice near Jangbogo Antarctic Station Using InSAR Coherence Images vol.31, pp.6, 2015, https://doi.org/10.7780/kjrs.2015.31.6.1
  5. KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교 vol.35, pp.3, 2011, https://doi.org/10.7848/ksgpc.2017.35.3.167
  6. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1
  7. Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method vol.37, pp.1, 2011, https://doi.org/10.7780/kjrs.2021.37.1.1