• Title/Summary/Keyword: Unwanted Resonance

Search Result 29, Processing Time 0.03 seconds

Unwanted effects due to interactions between dental materials and magnetic resonance imaging: a review of the literature

  • Chockattu, Sherin Jose;Suryakant, Deepak Byathnal;Thakur, Sophia
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2018
  • Magnetic resonance imaging (MRI) is an advanced diagnostic tool used in both medicine and dentistry. Since it functions based on a strong uniform static magnetic field and radiofrequency pulses, it is advantageous over imaging techniques that rely on ionizing radiation. Unfortunately, the magnetic field and radiofrequency pulses generated within the magnetic resonance imager interact unfavorably with dental materials that have magnetic properties. This leads to unwanted effects such as artifact formation, heat generation, and mechanical displacement. These are a potential source of damage to the oral tissue surrounding the affected dental materials. This review aims to compile, based on the current available evidence, recommendations for dentists and radiologists regarding the safety and appropriate management of dental materials during MRI in patients with orthodontic appliances, maxillofacial prostheses, dental implants, direct and indirect restorative materials, and endodontic materials.

A practical approach to handling protein samples under degradation

  • Jeong-Yong, Suh;Sung Hyun, Hong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.66-70
    • /
    • 2022
  • Protein structure determination using NMR spectroscopy requires a suite of heteronuclear 3-D NMR experiments that can take a couple of weeks for completion. During the experiments, protein samples may suffer from slow degradation due to co-purifying proteases, which complicates and slows down the assignment procedure. Here we describe a practical protocol to avoid unwanted proteolysis during the experiment.

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.

A Study on the Method to Suppress Radiation-Noise with Electromagnetic Wave Absorber in the Rectangular Cavity Resonator (전파 흡수체에 의한 구형 공동 공진기의 방사노이즈 억제 방법에 관한 연구)

  • 김경용;김왕섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.19-23
    • /
    • 1991
  • A method for suppressing unwanted resonance modes by attaching an electromagnetic wave absorber onto a metal case was studied to prevent performance deterioration of electronic devices. The electromagnetic wave absorber fabricated for this study had an attenuation characteristics above 20dB in the frequency band from 450MHz, 1150MHz. A rectangular cavity resonator whose resonance frequencies of TE$_{101}$, TE$_{102}$ modes were 900MHz, 1250MHz, respectively, was made to measure attenuation for the electromagnetic wave absorber-metal assembly. The result showed that the resonance mode for high attenuation was sensitive to the location of electromagnetic wave absorber, and the attenuation characteristics above 20dB could be obtained when electromagnetic wave absorber was properly positioned.

  • PDF

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

A Study on the Redundant Vibration Analysis for the Development of Scratch Processing Technology (스크래치 가공기술 개발에 따른 잉여 진동 성분 분석에 관한 연구)

  • Jeon C.D.;Cha J.H.;Yun Sh.I.;Han S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1660-1663
    • /
    • 2005
  • Unwanted vibrations are inevitably induced in other directions when pure unidirectional vibration motion is desired for the vertical scratching mechanism. Pure vertical vibration motion of the scratching machine can be obtained by driving identical two motors with symmetrically positioned eccentric unbalance masses. The desired optimal condition for driving pure vertical vibration for the scratching machine is assumed to be the resonance condition in that direction. Imposing the flexibility of the scratching machine in the horizontal direction, we can find out the amount of horizontal vibration component while maintaining the resonance in vertical direction. The desired stiffness in horizontal direction which produces the minimum vibration in horizontal direction are defined which can be used as a guide line to design the supporting structure of the scratching machine.

  • PDF

The Suppressing of MR Image Artifacts using Phases Cycling in Fast SE Sequence

  • Shin, Yong-Jin;Jeong, Gwang-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 1998
  • The correction of image artifacts due to misadjustment in tuning of RF coils (tip angle) and in the RF single sideband spectrometer was investigated using phase cycling of the $\pi$/2 and $\pi$ pulses in spin-echo sequences. A general procedure was developed for the systematic design of phase cycles that select desirable coherence transfer pathways. To analyze a phase cycling sequence, changes in the coherence level and phase factor for each RF pulse in the spin-echo cycle must be determined. Four different phase cycling schemes (FIXED, ALTERNATE, FORWARD, REVERSED) to suppress unwanted signal components such as mirror and ghost images were evaluated using two signal acquisitions. When the receiver phase factor is cycled counter-clockwise (REVERSED), these artifacts are completely removed.

  • PDF

Noise Suppression of NMR Signal by Piecewise Polynomial Truncated Singular Value Decomposition

  • Kim, Daesung;Youngdo Won;Hoshik Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.116-124
    • /
    • 2000
  • Singular value decomposition (SVD) has been used during past few decades in the advanced NMR data processing and in many applicable areas. A new modified SVD, piecewise polynomial truncated SVD (PPTSVD) was developed far the large solvent peak suppression and noise elimination in U signal processing. PPTSVD consists of two algorithms of truncated SVD (TSVD) and L$_1$ problems. In TSVD, some unwanted large solvent peaks and noises are suppressed with a certain son threshold value while signal and noise in raw data are resolved and eliminated out in L$_1$ problem routine. The advantage of the current PPTSVD method compared to many SVD methods is to give the better S/N ratio in spectrum, and less time consuming job that can be applicable to multidimensional NMR data processing.

  • PDF

Efficient baseline suppression via TIP and modified DEPTH

  • Hyun, Namgoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.51-58
    • /
    • 2022
  • The baseline flattened NMR spectrum has been achieved by several methodologies including pulse manipulation with a series of phase cycling. The background signal inherent in the probe is also main source of baseline distortion both in solution and solid NMR. The simple direct polarization with 90° pulse flipping the magnetization from the z-axis onto the receiver coil requires the strong rf pulse enough to encompass the wide frequency range to excite the resonance of interest nuclei. Albeit the perfect polarization 90° pulse, the signal from the unwanted magnetic fields such as background signal can not be completely suppressed by suitable phase cycling. Moreover, slowly baseline wiggling signal from the low 𝛾 nuclei is not easy to eliminate with multiple pulse manipulation. So there is still need to contrive the new scheme for that purpose in an adroit manner. In this article new triple pulse excitation schemes for TIP and modified DEPTH pulse sequence are analytically examined in terms of arbitrary phase and flip angle of pulse. The suitable phase cycling for these pulse trains is necessary for the good sensitivity and resolution of the spectrum. It is observed that the 13C sensitivity TIP experiment is almost equal to the CP/MAS with modified DEPTH sequence, both of which are applicable to both solid and solution state NMR.

Suppression of Parasitic Resonance Modes for the Millimeter-Wave SiP Applications (밀리미터파 SiP 응용을 위한 기생 공진 모드 억제)

  • Lee Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.883-889
    • /
    • 2006
  • In this paper, parasitic resonance modes generated in a conductor backed coplanar wave guide(CBCPW) and stripline band pass filter(BPF) and the oscillation phenomena of a 40 GHz power amplifier module(PAM) are analyzed and several methods to suppress them are presented for low-temperature co-fired ceramic(LTCC) based millimeter-wave RF System-in-Package(SiP) applications. Parasitic rectangular wave guide(RWG) modes of the CBCPW structure are completely suppressed in the operation frequency band by decreasing the distance between its vias and by increasing the mode frequency. In the stripline structure, RWG resonance modes are clearly eliminated by removing some vias facing each other and by placing them diagonally. In the case of the 40 GHz PAM, in order to reduce a cross talk due to radiation that is generated from interconnection discontinuities, high isolation structures such as embedded DC bas lines and CPW signal lines are used and then the oscillated PAM is improved.