• Title/Summary/Keyword: Unsymmetric hybrid composite

Search Result 6, Processing Time 0.017 seconds

Prediction of Spring-back for GFR/CFR Unsymmetric Hybrid Composites (유리섬유/탄소섬유 강화 비대칭 하이브리드 복합재의 스프링 백 예측)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Won, Myung-Shik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.158-161
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of its excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be removed to keep the precision of designed shape. In this research, the spring-back of {glass fiber / epoxy}+{carbon fiber / epoxy} unsymmetric hybrid composites were predicted using Classical Lamination Theory (CLT), and compared with the experimental data. Additionally, using finite element analysis (ANSYS), the predicted data and experimental data were compared. The predicted values by CLT and ANSYS were well matched with experimental data.

  • PDF

Simultaneous Measurement of Strain and Temperature During and After Cure of Unsymmetric Composite Laminate Using Fiber Optic Sensors (비대칭 복합적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 측정)

  • 강동훈;강현규;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • In this paper, we present the simultaneous measurement of the fabricaition strain and temperature during and after cure of unsymmetric composite laminate uising fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPl) hybrid sensors are used to measure those measurands. The characteristic matrix of sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilized as a light source. FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate at different direction and different location. We perform the real time measurement of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

  • PDF

Papers : Simultaneous Monitoring of Strain and Temperature During and After Cure of Unsymmetric Cross - ply Composite Laminate Using Fiber Optic Sensors (논문 : 비대칭 직교적층 복합재료 적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 모니터링)

  • Gang,Hyeon-Gyu;Gang,Dong-Hun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, we present the simulation monitoring of strain and temperature during and after the cure of unsymmetric composite laminate using fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors are used to measure those measurands. The characteristic matrix of the sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilised as a lighr source. Two FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate in different directions and different locations. We perform a real time monitoring of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in a thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

Three-dimensional contact analysis of a composite joint with unsymmetric boundary condition (비대칭 경계조건을 가지는 체결부의 3차원 접촉응력해석)

  • 장기정;박노회;안현수;권진회;최진호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.110-113
    • /
    • 2002
  • As a preliminary study for the three dimensional failure analysis of composite joints, the three dimensional stress analysis on a pin-loaded unidirectional-fabric hybrid composite joints are performed. The contact and frictions between composite plate and metal bush are considered in the finite element method by NASTRAN. Experiments are conducted to validate the accuracy and feasibility of the finite element technique for 25 specimens with 5 different geometries. The finite element and experimental results show the bush cap induces the unsymmetric deformation, stress distribution, and failure behavior through the thickness. The experiment also shows the failure loads are higher in the joint with bush cap than without it.

  • PDF

Thermal Residual Stresses and Spring back Effects on the Frequency Selective Surface Embedded Composite Laminates (주파수 선택막이 삽입된 복합재 평판의 잔류 열응력과 스프링 백 효과)

  • Park, Kyoung-Mi;Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Yong-Bae;Kim, Yun-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.475-481
    • /
    • 2013
  • The residual stresses occur in the Frequency Selective Surface(FSS) embedded hybrid composite structures after co-curing due to mismatch among the coefficient of thermal expansions and stiffness values between the FSS and composite materials. The spring backs occur due to these residual stresses. Therefore, in this paper, the spring-backs caused by residual stresses in FSS embedded composite structures were studied with considering effect of symmetric and unsymmetric stacking sequence of composite laminates.