• Title/Summary/Keyword: Unsupervised-learning

Search Result 480, Processing Time 0.02 seconds

A Sparse Target Matrix Generation Based Unsupervised Feature Learning Algorithm for Image Classification

  • Zhao, Dan;Guo, Baolong;Yan, Yunyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2806-2825
    • /
    • 2018
  • Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.

Unsupervised learning algorithm for signal validation in emergency situations at nuclear power plants

  • Choi, Younhee;Yoon, Gyeongmin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1230-1244
    • /
    • 2022
  • This paper proposes an algorithm for signal validation using unsupervised methods in emergency situations at nuclear power plants (NPPs) when signals are rapidly changing. The algorithm aims to determine the stuck failures of signals in real time based on a variational auto-encoder (VAE), which employs unsupervised learning, and long short-term memory (LSTM). The application of unsupervised learning enables the algorithm to detect a wide range of stuck failures, even those that are not trained. First, this paper discusses the potential failure modes of signals in NPPs and reviews previous studies conducted on signal validation. Then, an algorithm for detecting signal failures is proposed by applying LSTM and VAE. To overcome the typical problems of unsupervised learning processes, such as trainability and performance issues, several optimizations are carried out to select the inputs, determine the hyper-parameters of the network, and establish the thresholds to identify signal failures. Finally, the proposed algorithm is validated and demonstrated using a compact nuclear simulator.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

Unsupervised Learning with Natural Low-light Image Enhancement (자연스러운 저조도 영상 개선을 위한 비지도 학습)

  • Lee, Hunsang;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Recently, deep-learning based methods for low-light image enhancement accomplish great success through supervised learning. However, they still suffer from the lack of sufficient training data due to difficulty of obtaining a large amount of low-/normal-light image pairs in real environments. In this paper, we propose an unsupervised learning approach for single low-light image enhancement using the bright channel prior (BCP), which gives the constraint that the brightest pixel in a small patch is likely to be close to 1. With this prior, pseudo ground-truth is first generated to establish an unsupervised loss function. The proposed enhancement network is then trained using the proposed unsupervised loss function. To the best of our knowledge, this is the first attempt that performs a low-light image enhancement through unsupervised learning. In addition, we introduce a self-attention map for preserving image details and naturalness in the enhanced result. We validate the proposed method on various public datasets, demonstrating that our method achieves competitive performance over state-of-the-arts.

Reinforcement learning multi-agent using unsupervised learning in a distributed cloud environment

  • Gu, Seo-Yeon;Moon, Seok-Jae;Park, Byung-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • Companies are building and utilizing their own data analysis systems according to business characteristics in the distributed cloud. However, as businesses and data types become more complex and diverse, the demand for more efficient analytics has increased. In response to these demands, in this paper, we propose an unsupervised learning-based data analysis agent to which reinforcement learning is applied for effective data analysis. The proposal agent consists of reinforcement learning processing manager and unsupervised learning manager modules. These two modules configure an agent with k-means clustering on multiple nodes and then perform distributed training on multiple data sets. This enables data analysis in a relatively short time compared to conventional systems that perform analysis of large-scale data in one batch.

Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects (딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용)

  • Hanbi Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

Unsupervised Transfer Learning for Plant Anomaly Recognition

  • Xu, Mingle;Yoon, Sook;Lee, Jaesu;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.30-37
    • /
    • 2022
  • Disease threatens plant growth and recognizing the type of disease is essential to making a remedy. In recent years, deep learning has witnessed a significant improvement for this task, however, a large volume of labeled images is one of the requirements to get decent performance. But annotated images are difficult and expensive to obtain in the agricultural field. Therefore, designing an efficient and effective strategy is one of the challenges in this area with few labeled data. Transfer learning, assuming taking knowledge from a source domain to a target domain, is borrowed to address this issue and observed comparable results. However, current transfer learning strategies can be regarded as a supervised method as it hypothesizes that there are many labeled images in a source domain. In contrast, unsupervised transfer learning, using only images in a source domain, gives more convenience as collecting images is much easier than annotating. In this paper, we leverage unsupervised transfer learning to perform plant disease recognition, by which we achieve a better performance than supervised transfer learning in many cases. Besides, a vision transformer with a bigger model capacity than convolution is utilized to have a better-pretrained feature space. With the vision transformer-based unsupervised transfer learning, we achieve better results than current works in two datasets. Especially, we obtain 97.3% accuracy with only 30 training images for each class in the Plant Village dataset. We hope that our work can encourage the community to pay attention to vision transformer-based unsupervised transfer learning in the agricultural field when with few labeled images.

Unsupervised feature learning for classification

  • Abdullaev, Mamur;Alikhanov, Jumabek;Ko, Seunghyun;Jo, Geun Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.51-54
    • /
    • 2016
  • In computer vision especially in image processing, it has become popular to apply deep convolutional networks for supervised learning. Convolutional networks have shown a state of the art results in classification, object recognition, detection as well as semantic segmentation. However, supervised learning has two major disadvantages. One is it requires huge amount of labeled data to get high accuracy, the second one is to train so much data takes quite a bit long time. On the other hand, unsupervised learning can handle these problems more cheaper way. In this paper we show efficient way to learn features for classification in an unsupervised way. The network trained layer-wise, used backpropagation and our network learns features from unlabeled data. Our approach shows better results on Caltech-256 and STL-10 dataset.

  • PDF

Knowledge Distillation for Unsupervised Depth Estimation (비지도학습 기반의 뎁스 추정을 위한 지식 증류 기법)

  • Song, Jimin;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2022
  • This paper proposes a novel approach for training an unsupervised depth estimation algorithm. The objective of unsupervised depth estimation is to estimate pixel-wise distances from camera without external supervision. While most previous works focus on model architectures, loss functions, and masking methods for considering dynamic objects, this paper focuses on the training framework to effectively use depth cue. The main loss function of unsupervised depth estimation algorithms is known as the photometric error. In this paper, we claim that direct depth cue is more effective than the photometric error. To obtain the direct depth cue, we adopt the technique of knowledge distillation which is a teacher-student learning framework. We train a teacher network based on a previous unsupervised method, and its depth predictions are utilized as pseudo labels. The pseudo labels are employed to train a student network. In experiments, our proposed algorithm shows a comparable performance with the state-of-the-art algorithm, and we demonstrate that our teacher-student framework is effective in the problem of unsupervised depth estimation.