• Title/Summary/Keyword: Unsupervised machine learning.

Search Result 139, Processing Time 0.025 seconds

Acoustic Emission Source Classification of Finite-width Plate with a Circular Hole Defect using k-Nearest Neighbor Algorithm (k-최근접 이웃 알고리즘을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원분류에 대한 연구)

  • Rhee, Zhang-Kyu;Oh, Jin-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's $\lambda$, D&B(Rij) & Tou are discussed.

Anomaly Detection and Diagnostics (ADD) Based on Support Vector Data Description (SVDD) for Energy Consumption in Commercial Building (SVDD를 활용한 상업용 건물에너지 소비패턴의 이상현상 감지)

  • Chae, Young-Tae
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • Anomaly detection on building energy consumption has been regarded as an effective tool to reduce energy saving on building operation and maintenance. However, it requires energy model and FDD expert for quantitative model approach or large amount of training data for qualitative/history data approach. Both method needs additional time and labors. This study propose a machine learning and data science approach to define faulty conditions on hourly building energy consumption with reducing data amount and input requirement. It suggests an application of Support Vector Data Description (SVDD) method on training normal condition of hourly building energy consumption incorporated with hourly outdoor air temperature and time integer in a week, 168 data points and identifying hourly abnormal condition in the next day. The result shows the developed model has a better performance when the ${\nu}$ (probability of error in the training set) is 0.05 and ${\gamma}$ (radius of hyper plane) 0.2. The model accuracy to identify anomaly operation ranges from 70% (10% increase anomaly) to 95% (20% decrease anomaly) for daily total (24 hours) and from 80% (10% decrease anomaly) to 10%(15% increase anomaly) for occupied hours, respectively.

Developing a Multiclass Classification and Intelligent Matching System for Cold Rolled Steel Wire using Machine Learning (머신러닝을 활용한 냉간압조용 선재의 다중 분류 및 지능형 매칭 시스템 개발)

  • K.W. Lee;D.K. Lee;Y.J. Kwon;K.H, Cho;S.S. Park;K.S. Cho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • In this study, we present a system for identifying equivalent grades of standardized wire rod steel based on alloy composition using machine learning techniques. The system comprises two models, one based on a supervised multi-class classification algorithm and the other based on unsupervised autoencoder algorithm. Our evaluation showed that the supervised model exhibited superior performance in terms of prediction stability and reliability of prediction results. This system provides a useful tool for non-experts seeking similar grades of steel based on alloy composition.

Velocity Dispersion Bias of Galaxy Groups classified by Machine Learning Algorithm

  • Lee, Youngdae;Jeong, Hyunjin;Ko, Jongwan;Lee, Joon Hyeop;Lee, Jong Chul;Lee, Hye-Ran;Yang, Yujin;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • We present a possible bias in the estimation of velocity dispersions for galaxy groups due to the contribution of subgroups which are infalling into the groups. We execute a systematic search for flux-limited galaxy groups and subgroups based on the spectroscopic galaxies with r < 17.77 mag of SDSS data release 12, by using DBSCAN (Density-Based Spatial Clustering of Application with Noise) and Hierarchical Clustering Method which are well known unsupervised machine learning algorithm. A total of 2042 groups with at least 10 members are found and ~20% of groups have subgroups. We found that the estimation of velocity dispersions of groups using total galaxies including those in subgroups are underestimated by ~10% compared to the case of using only galaxies in main groups. This result suggests that the subgroups should be properly considered for mass measurement of galaxy groups based on the velocity dispersion.

  • PDF

Comparative Study of Tokenizer Based on Learning for Sentiment Analysis (고객 감성 분석을 위한 학습 기반 토크나이저 비교 연구)

  • Kim, Wonjoon
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.421-431
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the tokenizer in natural language processing for customer satisfaction in sentiment analysis. Methods: In this study, a supervised learning-based tokenizer Mecab-Ko and an unsupervised learning-based tokenizer SentencePiece were used for comparison. Three algorithms: Naïve Bayes, k-Nearest Neighbor, and Decision Tree were selected to compare the performance of each tokenizer. For performance comparison, three metrics: accuracy, precision, and recall were used in the study. Results: The results of this study are as follows; Through performance evaluation and verification, it was confirmed that SentencePiece shows better classification performance than Mecab-Ko. In order to confirm the robustness of the derived results, independent t-tests were conducted on the evaluation results for the two types of the tokenizer. As a result of the study, it was confirmed that the classification performance of the SentencePiece tokenizer was high in the k-Nearest Neighbor and Decision Tree algorithms. In addition, the Decision Tree showed slightly higher accuracy among the three classification algorithms. Conclusion: The SentencePiece tokenizer can be used to classify and interpret customer sentiment based on online reviews in Korean more accurately. In addition, it seems that it is possible to give a specific meaning to a short word or a jargon, which is often used by users when evaluating products but is not defined in advance.

Image Clustering Using Machine Learning : Study of InceptionV3 with K-means Methods. (머신 러닝을 사용한 이미지 클러스터링: K-means 방법을 사용한 InceptionV3 연구)

  • Nindam, Somsauwt;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.681-684
    • /
    • 2021
  • In this paper, we study image clustering without labeling using machine learning techniques. We proposed an unsupervised machine learning technique to design an image clustering model that automatically categorizes images into groups. Our experiment focused on inception convolutional neural networks (inception V3) with k-mean methods to cluster images. For this, we collect the public datasets containing Food-K5, Flowers, Handwritten Digit, Cats-dogs, and our dataset Rice Germination, and the owner dataset Palm print. Our experiment can expand into three-part; First, format all the images to un-label and move to whole datasets. Second, load dataset into the inception V3 extraction image features and transferred to the k-mean cluster group hold on six classes. Lastly, evaluate modeling accuracy using the confusion matrix base on precision, recall, F1 to analyze. In this our methods, we can get the results as 1) Handwritten Digit (precision = 1.000, recall = 1.000, F1 = 1.00), 2) Food-K5 (precision = 0.975, recall = 0.945, F1 = 0.96), 3) Palm print (precision = 1.000, recall = 0.999, F1 = 1.00), 4) Cats-dogs (precision = 0.997, recall = 0.475, F1 = 0.64), 5) Flowers (precision = 0.610, recall = 0.982, F1 = 0.75), and our dataset 6) Rice Germination (precision = 0.997, recall = 0.943, F1 = 0.97). Our experiment showed that modeling could get an accuracy rate of 0.8908; the outcomes state that the proposed model is strongest enough to differentiate the different images and classify them into clusters.

Multi-view learning review: understanding methods and their application (멀티 뷰 기법 리뷰: 이해와 응용)

  • Bae, Kang Il;Lee, Yung Seop;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.41-68
    • /
    • 2019
  • Multi-view learning considers data from various viewpoints as well as attempts to integrate various information from data. Multi-view learning has been studied recently and has showed superior performance to a model learned from only a single view. With the introduction of deep learning techniques to a multi-view learning approach, it has showed good results in various fields such as image, text, voice, and video. In this study, we introduce how multi-view learning methods solve various problems faced in human behavior recognition, medical areas, information retrieval and facial expression recognition. In addition, we review data integration principles of multi-view learning methods by classifying traditional multi-view learning methods into data integration, classifiers integration, and representation integration. Finally, we examine how CNN, RNN, RBM, Autoencoder, and GAN, which are commonly used among various deep learning methods, are applied to multi-view learning algorithms. We categorize CNN and RNN-based learning methods as supervised learning, and RBM, Autoencoder, and GAN-based learning methods as unsupervised learning.

Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future

  • Minjae Yoon;Jin Joo Park;Taeho Hur;Cam-Hao Hua;Musarrat Hussain;Sungyoung Lee;Dong-Ju Choi
    • International Journal of Heart Failure
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.

Detection of Traffic Anomalities using Mining : An Empirical Approach (마이닝을 이용한 이상트래픽 탐지: 사례 분석을 통한 접근)

  • Kim Jung-Hyun;Ahn Soo-Han;Won You-Jip;Lee Jong-Moon;Lee Eun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.3
    • /
    • pp.201-217
    • /
    • 2006
  • In this paper, we collected the physical traces from high speed Internet backbone traffic and analyze the various characteristics of the underlying packet traces. Particularly, our work is focused on analyzing the characteristics of an anomalous traffic. It is found that in our data, the anomalous traffic is caused by UDP session traffic and we determined that it was one of the Denial of Service attacks. In this work, we adopted the unsupervised machine learning algorithm to classify the network flows. We apply the k-means clustering algorithm to train the learner. Via the Cramer-Yon-Misses test, we confirmed that the proposed classification method which is able to detect anomalous traffic within 1 second can accurately predict the class of a flow and can be effectively used in determining the anomalous flows.

A Language Model and Clue based Machine Learning Method for Discovering Technology Trends from Patent Text (특허 문서 텍스트로부터의 기술 트렌드 탐지를 위한 언어 모델 및 단서 기반 기계학습 방법)

  • Tian, Yingshi;Kim, Young-Ho;Jeong, Yoon-Jae;Ryu, Ji-Hee;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.5
    • /
    • pp.420-429
    • /
    • 2009
  • Patent text is a rich source for discovering technological trends. In order to automate such a discovery process, we attempt to identify phrases corresponding to the problem and its solution method which together form a technology. Problem and solution phrases are identified by a SVM classifier using features based on a combination of a language modeling approach and linguistic clues. Based on the occurrence statistics of the phrases, we identify the time span of each problem and solution and finally generate a trend. Based on our experiment, we show that the proposed semantic phrase identification method is promising with its accuracy being 77% in R-precision. We also show that the unsupervised method for discovering technological trends is meaningful.