• Title/Summary/Keyword: Unsupervised machine learning.

Search Result 139, Processing Time 0.026 seconds

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

An Ensemble Model for Machine Failure Prediction (앙상블 모델 기반의 기계 고장 예측 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.

A Study on the Implementation of Crawling Robot using Q-Learning

  • Hyunki KIM;Kyung-A KIM;Myung-Ae CHUNG;Min-Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.15-20
    • /
    • 2023
  • Machine learning is comprised of supervised learning, unsupervised learning and reinforcement learning as the type of data and processing mechanism. In this paper, as input and output are unclear and it is difficult to apply the concrete modeling mathematically, reinforcement learning method are applied for crawling robot in this paper. Especially, Q-Learning is the most effective learning technique in model free reinforcement learning. This paper presents a method to implement a crawling robot that is operated by finding the most optimal crawling method through trial and error in a dynamic environment using a Q-learning algorithm. The goal is to perform reinforcement learning to find the optimal two motor angle for the best performance, and finally to maintain the most mature and stable motion about EV3 Crawling robot. In this paper, for the production of the crawling robot, it was produced using Lego Mindstorms with two motors, an ultrasonic sensor, a brick and switches, and EV3 Classroom SW are used for this implementation. By repeating 3 times learning, total 60 data are acquired, and two motor angles vs. crawling distance graph are plotted for the more understanding. Applying the Q-learning reinforcement learning algorithm, it was confirmed that the crawling robot found the optimal motor angle and operated with trained learning, and learn to know the direction for the future research.

Improvement of SOM using Stratification

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Self organizing map(SOM) is one of the unsupervised methods based on the competitive learning. Many clustering works have been performed using SOM. It has offered the data visualization according to its result. The visualized result has been used for decision process of descriptive data mining as exploratory data analysis. In this paper we propose improvement of SOM using stratified sampling of statistics. The stratification leads to improve the performance of SOM. To verify improvement of our study, we make comparative experiments using the data sets form UCI machine learning repository and simulation data.

A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning (머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.225-230
    • /
    • 2020
  • Machine learning is an algorithm which learns a computer based on the data so that the computer can identify the trend of the data and predict the output of new input data. Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is a way of learning a machine with given label of data. In other words, a method of inferring a function of the system through a pair of data and a label is used to predict a result using a function inferred about new input data. If the predicted value is continuous, regression analysis is used. If the predicted value is discrete, it is used as a classification. A result of analysis, no. 8 (5, 3.4, setosa), 27 (5, 3.4, setosa), 41 (5, 3.5, setosa), 44 (5, 3.5, setosa) and 40 (5.1, 3.4, setosa) in Table 3 were classified as the most similar Iris flower. Therefore, theoretical practical are suggested.

Neural-network based Computerized Emotion Analysis using Multiple Biological Signals (다중 생체신호를 이용한 신경망 기반 전산화 감정해석)

  • Lee, Jee-Eun;Kim, Byeong-Nam;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Emotion affects many parts of human life such as learning ability, behavior and judgment. It is important to understand human nature. Emotion can only be inferred from facial expressions or gestures, what it actually is. In particular, emotion is difficult to classify not only because individuals feel differently about emotion but also because visually induced emotion does not sustain during whole testing period. To solve the problem, we acquired bio-signals and extracted features from those signals, which offer objective information about emotion stimulus. The emotion pattern classifier was composed of unsupervised learning algorithm with hidden nodes and feature vectors. Restricted Boltzmann machine (RBM) based on probability estimation was used in the unsupervised learning and maps emotion features to transformed dimensions. The emotion was characterized by non-linear classifiers with hidden nodes of a multi layer neural network, named deep belief network (DBN). The accuracy of DBN (about 94 %) was better than that of back-propagation neural network (about 40 %). The DBN showed good performance as the emotion pattern classifier.

Network Anomaly Detection Technologies Using Unsupervised Learning AutoEncoders (비지도학습 오토 엔코더를 활용한 네트워크 이상 검출 기술)

  • Kang, Koohong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.617-629
    • /
    • 2020
  • In order to overcome the limitations of the rule-based intrusion detection system due to changes in Internet computing environments, the emergence of new services, and creativity of attackers, network anomaly detection (NAD) using machine learning and deep learning technologies has received much attention. Most of these existing machine learning and deep learning technologies for NAD use supervised learning methods to learn a set of training data set labeled 'normal' and 'attack'. This paper presents the feasibility of the unsupervised learning AutoEncoder(AE) to NAD from data sets collecting of secured network traffic without labeled responses. To verify the performance of the proposed AE mode, we present the experimental results in terms of accuracy, precision, recall, f1-score, and ROC AUC value on the NSL-KDD training and test data sets. In particular, we model a reference AE through the deep analysis of diverse AEs varying hyper-parameters such as the number of layers as well as considering the regularization and denoising effects. The reference model shows the f1-scores 90.4% and 89% of binary classification on the KDDTest+ and KDDTest-21 test data sets based on the threshold of the 82-th percentile of the AE reconstruction error of the training data set.

Outlier detection of main engine data of a ship using ensemble method (앙상블 기법을 이용한 선박 메인엔진 빅데이터의 이상치 탐지)

  • KIM, Dong-Hyun;LEE, Ji-Hwan;LEE, Sang-Bong;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.384-394
    • /
    • 2020
  • This paper proposes an outlier detection model based on machine learning that can diagnose the presence or absence of major engine parts through unsupervised learning analysis of main engine big data of a ship. Engine big data of the ship was collected for more than seven months, and expert knowledge and correlation analysis were performed to select features that are closely related to the operation of the main engine. For unsupervised learning analysis, ensemble model wherein many predictive models are strategically combined to increase the model performance, is used for anomaly detection. As a result, the proposed model successfully detected the anomalous engine status from the normal status. To validate our approach, clustering analysis was conducted to find out the different patterns of anomalies the anomalous point. By examining distribution of each cluster, we could successfully find the patterns of anomalies.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.

Fuzzy Partitioning of Photovoltaic Solar Power Patterns

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.5-10
    • /
    • 2022
  • Photovoltaic systems provide a reliable green energy solution. The sustainability and low-maintenance of Photovoltaic systems motivate the integration of Photovoltaic systems into the electrical grid and further contribute to a greener environment, as the system does not cause any pollution or emissions. Developing methodologies based on machine learning techniques to assist in reducing the burden of studies related to integrating Photovoltaic systems into the electric grid are of interest. This research aims to develop a methodology based on a unsupervised machine learning algorithm that can reduce the burden of extensive studies and simulations related to the integration of Photovoltaic systems into the electrical grid.