• Title/Summary/Keyword: Unsupervised machine learning.

Search Result 139, Processing Time 0.027 seconds

Anomaly Detection of Generative Adversarial Networks considering Quality and Distortion of Images (이미지의 질과 왜곡을 고려한 적대적 생성 신경망과 이를 이용한 비정상 검출)

  • Seo, Tae-Moon;Kang, Min-Guk;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.171-179
    • /
    • 2020
  • Recently, studies have shown that convolution neural networks are achieving the best performance in image classification, object detection, and image generation. Vision based defect inspection which is more economical than other defect inspection, is a very important for a factory automation. Although supervised anomaly detection algorithm has far exceeded the performance of traditional machine learning based method, it is inefficient for real industrial field due to its tedious annotation work, In this paper, we propose ADGAN, a unsupervised anomaly detection architecture using the variational autoencoder and the generative adversarial network which give great results in image generation task, and demonstrate whether the proposed network architecture identifies anomalous images well on MNIST benchmark dataset as well as our own welding defect dataset.

Deduction of regional characteristics using environmental spatial information and SOM (Self-Organizing map) for natural park zoning - Focused on Taeanhaean National Park - (자연공원 용도지구 설정을 위한 환경공간정보와 SOM(Self-Organizing map)을 활용한 지역 특성 도출 - 태안해안국립공원을 대상으로 -)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2023
  • Korea's natural parks are managed by dividing them into four use districts: nature preservation district, natural environment district, cultural heritage district, and park village district within the park under the goal of 'conservation and sustainable use of natural parks'. However, the use districts divided in this way are designated by reflecting the results derived from the simple drawing overlapping method, and there is a limit in that objective and scientific evidence for this is insufficient. In addition, in Taeanhaean National Park, the case of this study, only a very small area of less than 1% of the nature preservation district is designated, and the natural environment district that serves as a buffer space is designated on an excessively wide scale, making it difficult to efficiently manage the national park. Therefore, the use district is not fulfilling its role. In this study, the purpose of this study was to present a method for analyzing the spatial characteristics of natural parks using environmental indicators and unsupervised learning analysis methods to set the use districts of natural parks. In this study, evaluation indicators that can evaluate the natural and human environments were derived, and the distribution patterns for each indicator were analyzed. Afterwards, by applying Self-Organizing Map (SOM) analysis, one of the unsupervised learning analysis methods, districts with similar characteristics were derived in Taeanhaean National Park, and the characteristics of each district were analyzed. As a result of the study, 7 districts with different characteristics were derived in Taeanhaean National Park, and by examining the contribution of each indicator together, it was possible to reveal that each district had different representative characteristics even though it was an adjacent area. This study evaluated natural parks by comprehensively considering the indicators of the natural and human environments. In addition, the SOM method used in the study is meaningful in that it can provide scientific and objective grounds for the existing zoning and apply it to the management plan.

Distinct cell subtype composition using gene expression data in oral cancer (유전자 발현 데이터 기반 구강암에서의 세포 조성 차이 분석)

  • Rhee, Je-Keun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.59-65
    • /
    • 2019
  • There are various subtypes of cells in cancer tissues, but it is hard to confirm their composition experimentally. Here, we estimated the cell composition of each sample from gene expression data by using statistical machine learning approaches, two different regression models and investigated whether the cell composition was different between cancer and normal tissue. As a result, we found that CD8 T cell and Neutrophil were increased in oral cancer tissues compared to normal tissues. In addition, we applied t-SNE, which is one of the unsupervised learning, to verify whether normal tissue and oral cancer tissue can be clustered by the derived cell composition. Moreover, we showed that it is possible to predict oral cancer and normal tissue by several supervised classification algorithms. The study would help to improve the understanding of the immune cell infiltration at oral cancer.

Korean Semantic Similarity Measures for the Vector Space Models

  • Lee, Young-In;Lee, Hyun-jung;Koo, Myoung-Wan;Cho, Sook Whan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • It is argued in this paper that, in determining semantic similarity, Korean words should be recategorized with a focus on the semantic relation to ontology in light of cross-linguistic morphological variations. It is proposed, in particular, that Korean semantic similarity should be measured on three tracks, human judgements track, relatedness track, and cross-part-of-speech relations track. As demonstrated in Yang et al. (2015), GloVe, the unsupervised learning machine on semantic similarity, is applicable to Korean with its performance being compared with human judgement results. Based on this compatability, it was further thought that the model's performance might most likely vary with different kinds of specific relations in different languages. An attempt was made to analyze them in terms of two major Korean-specific categories involved in their lexical and cross-POS-relations. It is concluded that languages must be analyzed by varying methods so that semantic components across languages may allow varying semantic distance in the vector space models.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Neural Network Self-Organizing Maps Model for Partitioning PV Solar Power

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.1-4
    • /
    • 2022
  • The growth in global population and industrialization has led to an increasing demand for electricity. Accordingly, the electricity providers need to increase the electricity generation. Due to the economical and environmental concerns associated with the generation of electricity from fossil fuels. Alternative power recourses that can potentially mitigate the economical and environmental are of interest. Renewable energy resources are promising recourses that can participate in producing power. Among renewable power resources, solar energy is an abundant resource and is currently a field of research interest. Photovoltaic solar power is a promising renewable energy resource. The power output of PV systems is mainly affected by the solar irradiation and ambient temperature. this paper investigates the utilization of machine learning unsupervised neural network techniques that potentially improves the reliability of PV solar power systems during integration into the electrical grid.

Application of Topic Modeling Techniques in Arabic Content: A Systematic Review

  • Maram Alhmiyani;Huda Alhazmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.1-12
    • /
    • 2023
  • With the rapid increase of user generated data on digital platforms, the task of categorizing and classifying theses huge data has become difficult. Topic modeling is an unsupervised machine learning technique that can be used to get a summary from a large collection of documents. Topic modeling has been widely used in English content, yet the application of topic modeling in Arabic language is limited. Therefore, the aim of this paper is to provide a systematic review of the application of topic modeling algorithms in Arabic content. Using a well-known and trusted databases including ScienceDirect, IEEE Xplore, Springer Link, and Google Scholar. Considering the publication date from 2012 to 2022, we got 60 papers. After refining the papers based on predefined criteria, we resulted in 32 papers. Our result show that unfortunately the application of topic modeling techniques in Arabic content is limited.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

Proposal of Security Orchestration Service Model based on Cyber Security Framework (사이버보안 프레임워크 기반의 보안 오케스트레이션 서비스 모델 제안)

  • Lee, Se-Ho;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.618-628
    • /
    • 2020
  • The purpose of this paper is to propose a new security orchestration service model by combining various security solutions that have been introduced and operated individually as a basis for cyber security framework. At present, in order to respond to various and intelligent cyber attacks, various single security devices and SIEM and AI solutions that integrate and manage them have been built. In addition, a cyber security framework and a security control center were opened for systematic prevention and response. However, due to the document-oriented cybersecurity framework and limited security personnel, the reality is that it is difficult to escape from the control form of fragmentary infringement response of important detection events of TMS / IPS. To improve these problems, based on the model of this paper, select the targets to be protected through work characteristics and vulnerable asset identification, and then collect logs with SIEM. Based on asset information, we established proactive methods and three detection strategies through threat information. AI and SIEM are used to quickly determine whether an attack has occurred, and an automatic blocking function is linked to the firewall and IPS. In addition, through the automatic learning of TMS / IPS detection events through machine learning supervised learning, we improved the efficiency of control work and established a threat hunting work system centered on big data analysis through machine learning unsupervised learning results.

Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network (인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구)

  • Rhee, Zhang-Kyu;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.