• Title/Summary/Keyword: Unsupervised machine learning.

Search Result 139, Processing Time 0.027 seconds

The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise (탄성파 자료 잡음 제거를 위한 비지도 학습 연구)

  • Kim, Sujeong;Jun, Hyunggu
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.71-84
    • /
    • 2022
  • When acquiring seismic data, various types of simultaneously recorded seismic noise hinder accurate interpretation. Therefore, it is essential to attenuate this noise during the processing of seismic data and research on seismic noise attenuation. For this purpose, machine learning is extensively used. This study attempts to attenuate noise in prestack seismic data using unsupervised machine learning. Three unsupervised machine learning models, N2NUNET, PATCHUNET, and DDUL, are trained and applied to synthetic and field prestack seismic data to attenuate the noise and leave clean seismic data. The results are qualitatively and quantitatively analyzed and demonstrated that all three unsupervised learning models succeeded in removing seismic noise from both synthetic and field data. Of the three, the N2NUNET model performed the worst, and the PATCHUNET and DDUL models produced almost identical results, although the DDUL model performed slightly better.

Ensemble Model for Urine Spectrum Analysis Based on Hybrid Machine Learning (혼합 기계 학습 기반 소변 스펙트럼 분석 앙상블 모델)

  • Choi, Jaehyeok;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1059-1065
    • /
    • 2020
  • In hospitals, nurses are subjectively determining the urine status to check the kidneys and circulatory system of patients whose statuses are related to patients with kidney disease, critically ill patients, and nursing homes before and after surgery. To improve this problem, this paper proposes a urine spectrum analysis system which clusters urine test results based on a hybrid machine learning model consists of unsupervised learning and supervised learning. The proposed system clusters the spectral data using unsupervised learning in the first part, and classifies them using supervised learning in the second part. The results of the proposed urine spectrum analysis system using a mixed model are evaluated with the results of pure supervised learning. This paper is expected to provide better services than existing medical services to patients by solving the shortage of nurses, shortening of examination time, and subjective evaluation in hospitals.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

A Machine Learning Approach to Korean Language Stemming

  • Cho, Se-hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.549-557
    • /
    • 2001
  • Morphological analysis and POS tagging require a dictionary for the language at hand . In this fashion though it is impossible to analyze a language a dictionary. We also have difficulty if significant portion of the vocabulary is new or unknown . This paper explores the possibility of learning morphology of an agglutinative language. in particular Korean language, without any prior lexical knowledge of the language. We use unsupervised learning in that there is no instructor to guide the outcome of the learner, nor any tagged corpus. Here are the main characteristics of the approach: First. we use only raw corpus without any tags attached or any dictionary. Second, unlike many heuristics that are theoretically ungrounded, this method is based on statistical methods , which are widely accepted. The method is currently applied only to Korean language but since it is essentially language-neutral it can easily be adapted to other agglutinative languages.

  • PDF

Unsupervised Machine Learning based on Neighborhood Interaction Function for BCI(Brain-Computer Interface) (BCI(Brain-Computer Interface)에 적용 가능한 상호작용함수 기반 자율적 기계학습)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.289-294
    • /
    • 2015
  • This paper proposes an autonomous machine learning method applicable to the BCI(Brain-Computer Interface) is based on the self-organizing Kohonen method, one of the exemplary method of unsupervised learning. In addition we propose control method of learning region and self machine learning rule using an interactive function. The learning region control and machine learning was used to control the side effects caused by interaction function that is based on the self-organizing Kohonen method. After determining the winner neuron, we decided to adjust the connection weights based on the learning rules, and learning region is gradually decreased as the number of learning is increased by the learning. So we proposed the autonomous machine learning to reach to the network equilibrium state by reducing the flow toward the input to weights of output layer neurons.

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.

A study about CS Unplugged using Unsupervised Learning (비지도 학습을 위한 언플러그드 활동에 대한 연구)

  • Jun, Bungwoo;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.175-179
    • /
    • 2021
  • Computer Science Unplugged activities are activities to learn about computer science through learning tools other than programming programs. Existing unplugged activities focus on the procedural thinking process and focus on guiding the thinking process through play. There is a lack of research on unsupervised learning, which plays an important role in machine learning, which has recently attracted attention. In this study, we designed and conducted an unplugged activities for unsupervised learning that analyzes data using video media familiar to elementary school students. The results on the effectiveness of the class were analyzed using the bebras challenge. As a result of analyzing the scores of the pre-test and post-test, it was confirmed that the students' computational thinking and problem-solving ability improved.

  • PDF

Evaluating Unsupervised Deep Learning Models for Network Intrusion Detection Using Real Security Event Data

  • Jang, Jiho;Lim, Dongjun;Seong, Changmin;Lee, JongHun;Park, Jong-Geun;Cheong, Yun-Gyung
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.10-19
    • /
    • 2022
  • AI-based Network Intrusion Detection Systems (AI-NIDS) detect network attacks using machine learning and deep learning models. Recently, unsupervised AI-NIDS methods are getting more attention since there is no need for labeling, which is crucial for building practical NIDS systems. This paper aims to test the impact of designing autoencoder models that can be applied to unsupervised an AI-NIDS in real network systems. We collected security events of legacy network security system and carried out an experiment. We report the results and discuss the findings.

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.