탄성파 자료 취득 시 신호와 함께 기록되는 다양한 형태의 잡음은 탄성파 자료의 정확한 해석을 방해하는 요인으로 작용한다. 따라서 탄성파 자료의 잡음 제거는 탄성파 자료 처리 과정 중 필수적인 절차이므로 기계 학습을 포함한 다양한 방식의 잡음 제거 연구가 수행되고 있다. 본 연구에서는 비지도 학습 기반의 탄성파 잡음 제거 모델을 이용하여 중합 전 탄성파 자료의 잡음 제거를 수행하고자 하였으며 총 세 가지의 비지도 학습 기반 기계 학습 모델을 비교하였다. 세 가지의 비지도 학습 모델은 N2NUNET, PATCHUNET, DDUL로 각각 서로 다른 신경망 구조를 통해 정답 자료 없이 탄성파 잡음을 제거한다. 세 가지 모델들을 인공 합성 및 현장 중합 전 탄성파 자료에 적용하여 잡음을 제거한 후 그 결과를 정성적·정량적으로 분석하였으며, 분석 결과 세 가지 비지도 학습 모델 모두 인공 합성 및 현장 자료의 탄성파 잡음을 적절히 제거하였음을 확인하였다. 그 중 N2NUNET 모델이 가장 낮은 잡음 제거 성능을 보여주었으며, PATCHUNET과 DDUL은 거의 유사한 결과를 도출하였지만, DDUL이 정량적으로 근소한 우위를 보였다.
In hospitals, nurses are subjectively determining the urine status to check the kidneys and circulatory system of patients whose statuses are related to patients with kidney disease, critically ill patients, and nursing homes before and after surgery. To improve this problem, this paper proposes a urine spectrum analysis system which clusters urine test results based on a hybrid machine learning model consists of unsupervised learning and supervised learning. The proposed system clusters the spectral data using unsupervised learning in the first part, and classifies them using supervised learning in the second part. The results of the proposed urine spectrum analysis system using a mixed model are evaluated with the results of pure supervised learning. This paper is expected to provide better services than existing medical services to patients by solving the shortage of nurses, shortening of examination time, and subjective evaluation in hospitals.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.494-510
/
2024
Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.
본 논문을 통해서 우리는 최적화 알고리즘인 binary harmony search (BHS) 알고리즘을 이용하여 unsupervised nonlinear classifier를 구현하는 방안을 제시하였다. 패턴인식을 위한 기계학습이나 뇌파 신호의 분석 과정과 같이 벡터로 표현되는 특징들을 분류하는데 있어 다양한 알고리즘들이 제시되었다. 교사 학습기반의 분류 방식으로는 support vector machine과 같은 기법이 사용되어왔고, 비교사 학습 방법을 통한 분류 기법으로는 fuzzy c-mean (FCM)과 같은 알고리즘들이 사용되어 왔다. 그러나 기존에 사용해 왔던 분류 방법들은 비선형 데이터 분류에 적용하기 힘들거나 교사 학습을 적용하기 위해서 사전정보를 필요로 하는 문제점이 있다. 본 논문에서는 경험적 접근을 통해 공간상에 분포된 벡터 사이의 기하학적 거리를 최소로 만드는 벡터 집합을 선택하고 이를 하나의 클래스로 간주하는 방법을 적용한 분류법을 제시하였다. 비교 대상으로 FCM과 artificial neural network (ANN) 기반의 self-organizing map (SOM)을 제시하였다. 시뮬레이션에는 KEEL machine learing dataset을 사용하였고 그 결과, 제안된 방식이 기존 알고리즘에 비해 더 나은 우수성을 지니고 있음을 확인하였다.
Morphological analysis and POS tagging require a dictionary for the language at hand . In this fashion though it is impossible to analyze a language a dictionary. We also have difficulty if significant portion of the vocabulary is new or unknown . This paper explores the possibility of learning morphology of an agglutinative language. in particular Korean language, without any prior lexical knowledge of the language. We use unsupervised learning in that there is no instructor to guide the outcome of the learner, nor any tagged corpus. Here are the main characteristics of the approach: First. we use only raw corpus without any tags attached or any dictionary. Second, unlike many heuristics that are theoretically ungrounded, this method is based on statistical methods , which are widely accepted. The method is currently applied only to Korean language but since it is essentially language-neutral it can easily be adapted to other agglutinative languages.
본 연구는 비교사학습의 대표적인 방법 중 하나인 코호넨의 자기조직화 방법을 기반으로 BCI(Brain-Computer Interface)에 적용 가능한 자율적 기계학습방법을 제안한다. 이를 위해 상호작용 함수를 이용한 학습영역조정방법과 자율적 기계학습규칙을 제안하였다. 학습영역조정과 기계학습은 코호넨의 자기조직화 방법을 기반으로 한 상호작용 함수에 의한 측면제어효과를 이용하였다. 승자 뉴런을 결정하고 난 후 학습 규칙에 따라 뉴런의 연결강도를 조정하고 학습 횟수가 증가함에 따라 학습영역이 점차 감소하여 출력층 뉴런 가중치들의 입력을 향한 유동을 완화시켜 네트워크가 평형 상태(equilibrium state)에 도달하여 학습을 마칠 수 있는 자율적 기계학습을 제안하였다.
Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
Journal of Computing Science and Engineering
/
제7권2호
/
pp.112-121
/
2013
The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.
언플러그드 활동은 프로그래밍 프로그램 이외의 학습 도구를 통하여 컴퓨터 과학에 대하여 학습하는 활동들이다. 기존의 언플러그드 활동은 절차적인 사고 과정에 초점을 맞추고, 놀이를 통해 사고 과정을 지도하는 것에 초점을 두어, 최근 주목되는 머신 러닝에서 중요한 비중을 차지하는 비지도 학습에 대한 연구는 부족한 실정이다. 본 연구에서는 초등학생들에게 익숙한 영상 매체를 사용하여 데이터를 분석하는 비지도 학습을 위한 언플러그드 수업을 설계하고, 수업을 실시한 후에 비버챌린지를 활용하여 수업의 효과성에 대한 결과를 분석하였다. 사전 검사와 사후 검사의 점수를 분석한 결과 학생들의 computational thinking 과 문제 해결력이 향상되었음을 확인할 수 있었다.
International journal of advanced smart convergence
/
제11권4호
/
pp.10-19
/
2022
AI-based Network Intrusion Detection Systems (AI-NIDS) detect network attacks using machine learning and deep learning models. Recently, unsupervised AI-NIDS methods are getting more attention since there is no need for labeling, which is crucial for building practical NIDS systems. This paper aims to test the impact of designing autoencoder models that can be applied to unsupervised an AI-NIDS in real network systems. We collected security events of legacy network security system and carried out an experiment. We report the results and discuss the findings.
In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.