• 제목/요약/키워드: Unsupervised

검색결과 822건 처리시간 0.025초

변분 오토인코더와 비교사 데이터 증강을 이용한 음성인식기 준지도 학습 (Semi-supervised learning of speech recognizers based on variational autoencoder and unsupervised data augmentation)

  • 조현호;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제40권6호
    • /
    • pp.578-586
    • /
    • 2021
  • 종단간 음성인식기의 성능향상을 위한 변분 오토인코더(Variational AutoEncoder, VAE) 및 비교사 데이터 증강(Unsupervised Data Augmentation, UDA) 기반의 준지도 학습 방법을 제안한다. 제안된 방법에서는 먼저 원래의 음성데이터를 이용하여 VAE 기반 증강모델과 베이스라인 종단간 음성인식기를 학습한다. 그 다음, 학습된 증강모델로부터 증강된 데이터를 이용하여 베이스라인 종단간 음성인식기를 다시 학습한다. 마지막으로, 학습된 증강모델 및 종단간 음성인식기를 비교사 데이터 증강 기반의 준지도 학습 방법으로 다시 학습한다. 컴퓨터 모의실험 결과, 증강모델은 기존의 종단간 음성인식기의 단어오류율(Word Error Rate, WER)을 개선하였으며, 비교사 데이터 증강학습방법과 결합함으로써 성능을 더욱 개선하였다.

딥러닝 기반의 도메인 적응 기술: 서베이 (Deep Learning based Domain Adaptation: A Survey)

  • 나재민;황원준
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.511-518
    • /
    • 2022
  • 딥러닝 기반의 지도학습은 다양한 응용 분야에서 비약적인 발전을 이루었다. 그러나 많은 지도 학습 방법들은 학습 및 테스트 데이터가 동일한 분포에서 추출된다는 공통된 가정 하에 이루어진다. 이 제약 조건에서 벗어나는 경우, 학습 도메인에서 훈련된 딥러닝 네트워크는 도메인 간의 분포 차이로 인하여 테스트 도메인에서의 성능이 급격하게 저하될 가능성이 높다. 도메인 적응 기술은 레이블이 풍부한 학습 도메인 (소스 도메인)의 학습된 지식을 기반으로 레이블이 불충분한 테스트 도메인 (타겟 도메인) 에서 성공적인 추론을 할 수 있도록 딥러닝 네트워크를 훈련하는 전이 학습의 한 방법론이다. 특히 비지도 도메인 적응 기술은 타겟 도메인에 레이블이 전혀 없는 이미지 데이터에만 접근할 수 있는 상황을 가정하여 도메인 적응 문제를 다룬다. 본 논문에서는 이러한 비지도 학습 기반의 도메인 적응 기술들에 대해 탐구한다.

자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정 (Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving)

  • 황승준;박성준;백중환
    • 한국항행학회논문지
    • /
    • 제27권2호
    • /
    • pp.182-189
    • /
    • 2023
  • 깊이 추정은 차량, 로봇, 드론의 자율주행을 위한 3차원 지도 생성의 핵심 기술이다. 기존의 센서 기반 깊이 추정 방식은 정확도는 높지만 가격이 비싸고 해상도가 낮다. 반면 카메라 기반 깊이 추정 방식은 해상도가 높고 가격이 저렴하지만 정확도가 낮다. 본 연구에서는 무인항공기 카메라의 깊이 추정 성능 향상을 위해 Self-Attention 기반의 비지도 단안 카메라 영상 깊이 추정을 제안한다. 네트워크에 Self-Attention 연산을 적용하여 전역 특징 추출 성능을 향상시킨다. 또한 카메라 파라미터를 학습하는 네트워크를 추가하여 카메라 칼리브레이션이 안되어있는 이미지 데이터에서도 사용 가능하게 한다. 공간 데이터 생성을 위해 추정된 깊이와 카메라 포즈는 카메라 파라미터를 이용하여 포인트 클라우드로 변환되고, 포인트 클라우드는 Octree 구조의 점유 그리드를 사용하여 3D 맵으로 매핑된다. 제안된 네트워크는 합성 이미지와 Mid-Air 데이터 세트의 깊이 시퀀스를 사용하여 평가된다. 제안하는 네트워크는 이전 연구에 비해 7.69% 더 낮은 오류 값을 보여주었다.

Dual-stream Co-enhanced Network for Unsupervised Video Object Segmentation

  • Hongliang Zhu;Hui Yin;Yanting Liu;Ning Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.938-958
    • /
    • 2024
  • Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.

Development of an unsupervised learning-based ESG evaluation process for Korean public institutions without label annotation

  • Do Hyeok Yoo;SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.155-164
    • /
    • 2024
  • 본 연구는 ESG 등급이 제공되지 않는 국내 공공기관의 ESG 등급을 추정하는 비지도 학습 기반 군집모형을 제안한다. 이를 위해, 스펙트럼 군집과 k-means 군집에서 최적의 클러스터 수를 비교했고, 그 결과의 신뢰성을 보장하기 위해 성능지표인 Davies-Bouldin Index (DBI)를 계산했다. 결과적으로, 스펙트럼 군집과 k-means 군집에서 각각 0.734 및 1.715의 DBI 값을 산출했는데, 이는 값이 작을수록 우수한 성능을 의미하므로 스펙트럼 군집의 우수성을 확인하였다. 게다가, T-검정 및 ANOVA를 이용하여 ESG 비재무 데이터 간 통계적으로 유의미한 차이를 밝혀내고, 상관계수를 이용하여 ESG 항목 간 상관관계를 확인했다. 본 연구는 이러한 결과를 바탕으로 기존 ESG 등급 없이 공공기관별 ESG 성과 순위를 추정할 가능성을 제시한다. 이는 최적의 클러스터 수를 계산한 다음, 각 클러스터 내 ESG 데이터의 평균 총합을 결정함으로써 달성된다. 따라서, 제안된 모델은 다양한 국내 공공기관의 ESG 등급을 평가하는 근거로 활용될 수 있고, 국내 지속가능경영 실천과 성과관리에 유용할 것으로 기대된다.

가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템 (Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function)

  • 김동현;임형철;이성수
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.6-13
    • /
    • 2024
  • 본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.

RAM 기반 신경망의 비지도 학습에 관한 연구 (A Study on Unsupervised Learning Method of RAM-based Neural Net)

  • 박상무;김성진;이동형;이수동;옥철영
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.31-38
    • /
    • 2011
  • RAM 기반 3-D 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. MRD(Maximum Response Detector) 기법을 이용한 3-D 신경망의 인식 방법은 지도 학습에 기반을 둔 것으로서 학습을 통해 신경망 스스로가 범주를 구분할 수 없으며 잘 구분된 범주의 학습 데이터를 통해서만 성능을 발휘할 수 있다. 본 논문에서는 기존 3-D 신경 회로망에 학습 데이터의 구분 없이 신경망 자체가 입력 패턴에 따라 학습하여 범주를 구분하는 비지도 학습 알고리즘을 제안한다. 제안된 비지도 학습 알고리즘에 의해 신경회로망은 판별자의 수를 스스로 조절할 수 있는 구조를 가지게 되며 이는 망의 유연한 확장성을 보장한다. 0에서 9까지의 다중 패턴으로 구성된 오프라인 필기체 숫자를 무작위로 추출하여 학습 패턴으로 인식 실험을 수행하였으며 실험을 통해 신경망이 스스로 비지도 학습에 의해 판별자의 수를 결정하게 되며 이것은 신경망이 각각의 필기체 숫자에 대한 개념을 가지게 되는 것으로 해석할 수 있다.

다시기 원격탐사자료 기반 무감독 변화탐지의 계절적 영향 제거 (Seasonal Effects Removal of Unsupervised Change Detection based Multitemporal Imagery)

  • 박홍련;최재완;오재홍
    • 한국측량학회지
    • /
    • 제36권2호
    • /
    • pp.51-58
    • /
    • 2018
  • 최근, 다양한 위성센서가 개발되면서 다시기 위성영상의 취득이 용이해지고 있다. 이에 따라, 재난/재해, 국토모니터링 등과 같은 활용분야에 다시기 위성영상을 적용하기 위한 변화탐지 기법에 대한 연구들이 수행되고 있다. 특히, 빠른 시간 내에 변화지역의 추출이 가능한 무감독 변화탐지 기법의 개발과 관련된 연구들이 수행되고 있지만, 계절적 변화 등과 같은 방사적 차이로 인해 오탐지가 발생하는 단점이 있다. 따라서, 본 연구에서는 무감독 변화탐지 기법 중의 하나인 $S^2CVA$ 기법을 적용하여 생성한 변화방향 벡터를 이용하여 계절적 영향으로 인한 오탐지를 감소시키고자 하였다. 이를 위하여, 동일한 계절을 가지는 RapidEye 위성영상과 다른 계절에 촬영된 RapidEye 위성 영상에 $S^2CVA$ 기법을 적용하였으며, $S^2CVA$의 변화방향벡터가 계절적 영향에 따른 오탐지를 제거할 수 있는지를 분석하였다. 정량적 평가를 위해 변화탐지 결과의 ROC 곡선과 AUC 분석을 통해 기존의 방법에 비해 변화탐지 성능이 향상된 것을 확인하였다.

국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신 (Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map)

  • 이승기;최석근;노신택;임노열;최주원
    • 한국측량학회지
    • /
    • 제33권4호
    • /
    • pp.267-275
    • /
    • 2015
  • 토지피복지도는 환경, 군사, 의사결정 등 다양한 분야에서 널리 사용되고 있다. 본 연구에서는 단일 위성영상과 환경부에서 제공하는 국가토지피복도를 이용하여 훈련자료를 자동으로 추출하고, 이를 활용하여 피복을 분류하는 방법을 제안하였다. 이를 위하여 초기 훈련자료는 무감독분류인 ISODATA와 기존 토지피복도를 이용하였으며, 무감독 분류 사용시 각 클래스별 분류 선정과 클래스 명명, 감독분류에서 훈련자료 선정 등의 문제점을 해결하기 위하여 기존 토지피복도의 클래스 정보를 활용하여 자동으로 클래스를 분류하고 명명하였다. 추출된 초기 훈련자료는 대상 위성영상의 토지피복분류를 위하여 MLC의 훈련자료를 활용하였고, 피복분류의 정확도 향상을 위하여 반복방법을 적용하여 훈련자료를 갱신하였으며 최종적으로 토지피복지도를 추출하였다. 또한, 화소분류방법에서 발생하는 salt and pepper를 감소시키기 위하여 각 반복단계별 MRF를 적용하여 분류정확도를 향상시켰다. 본 연구에서 제안된 방법을 대상지역에 적용한 결과 효과적으로 토지피복지도를 생성할 수 있음을 정량적, 시각적으로 확인하였다.

대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리 (Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery)

  • 한수희
    • 한국측량학회지
    • /
    • 제35권3호
    • /
    • pp.187-194
    • /
    • 2017
  • 본 연구는 대용량 위성영상의 신속한 무감독 분류를 위해 k-means 군집화 알고리즘을 병렬처리하는 방법을 소개한다. K-means 군집화 알고리즘은 대표적인 무감독분류 알고리즘으로서 주로 감독분류의 전처리 단계로 활용되지만 연산 집약적이고 사용자의 개입이 적어 병렬처리의 효과를 분명하게 나타낼 수 있다. 병렬처리 코드는 OpenMP 기반의 멀티쓰레딩을 이용하여 구현하였다. 실험은 1대의 PC에서 시행하였으며 이 PC의 CPU에는 8개의 멀티코어가 집적되어 있다. 실험 영상으로는 7개 밴드로 구성한 30m 해상도의 LANDSAT 8 OLI 영상과 8개 밴드로 구성한 10m 해상도의 Sentinel-2A 영상을 사용하였다. 각각 10개 군집을 사용하여 순차처리 및 병렬처리를 수행한 결과 병렬처리가 순차처리에 비해 6배 내외의 속도를 나타내었다. 순차처리와 병렬처리 결과의 일치성 평가를 위해 각 군집의 중심값과 분류된 화소의 수를 비교하고 분류 결과 영상간 차분을 수행하였고 결과로 모든 정보가 일치하였다. 본 연구는 병렬처리를 통해 대용량 위성영상의 처리 속도를 상당히 향상시킬 수 있음을 입증하고 있다는 점에서 의미가 있다고 판단된다. 아울러 OpenMP 기반의 멀티쓰레드를 이용하면 비교적 쉽게 병렬처리를 구현할 수 있지만 false sharing의 발생을 억제하도록 코드를 설계하는데 주의를 기울여야 함도 확인할 수 있었다.