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Abstract 
 

Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in 
computer vision as the annotation of the target object in the testing video is unknown at all. 
The main difficulty is to effectively handle the complicated and changeable motion state of 
the target object and the confusion of similar background objects in video sequence. In this 
paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via 
bidirectional motion cues refinement and multi-level feature aggregation, which can fully take 
advantage of motion cues and effectively integrate different level features to produce high-
quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are 
co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), 
which learns from bidirectional optical flow images and produces fine-grained and complete 
distinctive motion saliency map, and the other is an appearance stream with a Multi-level 
Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are 
designed to integrate the different level features effectively. Specifically, the motion saliency 
map obtained by the motion stream is fused with each stage of the decoder in the appearance 
stream to improve the segmentation, and in turn the segmentation loss in the appearance stream 
feeds back into the motion stream to enhance the motion refinement. Experimental results on 
three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved 
comparable results with some state-of-the-art methods. 
 
Keywords: Unsupervised video object segmentation, Dual-stream Co-enhanced, Motion 
refinement, Feature aggregation, Dual-stream neural network. 
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1. Introduction 

Video object segmentation is a basic task in the field of computer vision, which has played 
an important role in video editing [1-2], autonomous driving [3-4] and video surveillance [5-
6]. The segmented object is generally the most distinct and primary object in the whole video 
sequence. The fundamental challenges of video object segmentation lie in the complexity of 
the video scene and the variety of the objects. Meanwhile, the video usually contains rich 
motion states and complex background interference, resulting in occlusion, fast moving and 
appearance variations, which brings serious challenges for accurate and stable object 
segmentation task. 
In this paper, we focus on the Unsupervised Video Object Segmentation (UVOS) task， where 
no manual annotation about the target object to be segmented is provided. In addition to the 
common challenges of the video data itself mentioned above, UVOS does not require any 
human involvement in the test phase. Therefore, accurately locating the most prominent 
objects in the entire video sequence will be even more challenging. 
In UVOS, motion cues are very important as the saliency of the target object in a video depends 
not only on the appearance but also on its continuous movement in successive frames. And 
motion cues also provide high discriminable features for the confusion caused by other 
surroundings which have similar colors, textures with the target object. However, most 
previous approaches [7-13] using motion cues as auxiliary information to help improve 
segmentation performance are often unsatisfactory when dealing with some complex motion 
state video sequences. The main reason is that only considering single-direction motion in the 
video sequences containing complex motion states often leads to inaccurate motion estimation. 
As shown in Fig. 1, we found that in some video sequences with complex environments and 
changeable motion states, the forward optical flow and backward optical flow of the target 
have some complementary parts (the dancer’s arm in the second row, the woman’s right leg 
in the third row, and the bicycle wheel in the last row).  
Furthermore, for current feature extraction framework based on CNNs architecture, the lower 
level reflects more fine-grained details information (edge and color), while the top layer of the 
network reflects high-level semantic information which drops out some meaningless or 
irrelevant detail information. The low-level features and high-level semantic features have 
different effects on the details and locations of the foreground object, but existing methods do 
not effectively integrate different level features together, and the high-level semantic features 
are not fully utilized in the top-down transfer process. 
Motivated by the above observations, a novel deep Dual-stream Co-enhanced Network (DC-
Net) is proposed in this paper for UVOS. As shown in Fig. 2, DC-Net is a dual-stream 
architecture where the two streams are co-enhanced each other, where the motion stream learns 
from bidirectional optical flow and produces fine-grained and complete distinctive motion 
saliency map, and the appearance stream is specifically designed to integrate the different level 
features effectively. Specifically, the motion saliency map obtained by the motion stream is 
fused with each stage of the decoder in the appearance stream to improve the segmentation 
and the segmentation loss in the appearance stream feeds back into the motion stream for the 
motion cues refinement.  Through the co-enhance process, DC-Net can fully take advantage 
of motion cues and effectively integrate different level features to produce high-quality 
segmentation mask. 
In summary, our contribution can be summarized as follows: 
1. A novel deep dual-stream co-enhanced network (DC-Net) is proposed for UVOS task, 
which can effectively integrate appearance and motion features, and generate high-quality 
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segmentation masks in a co-enhance process. 
2. In order to make up for the insufficient amount of appearance information and improve the 
problem of inaccurate motion estimation in single-direction optical flow, we propose a Motion 
Refine Module (MRM), which makes full use of forward and backward optical flow 
information to learn more complete motion cues of the target object, thereby making the 
segmentation results more complete. 
3. In order to enhance the attention to semantic information in the segmentation process and 
avoid the loss of the information of different scales in the process of propagation, we propose 
a Context Attention Module (CAM) to enhance the representation of high-level semantic 
features and model the relationships among multiple salient objects. Then through the 
designed Multi-level Feature Aggregation Module (MFAM), the low-level features, high-level 
features and enhanced high-level features can be effectively integrated to improve the 
segmentation effect. 
4. Extensive experiments are conducted on the Davis2016 [14] dataset to verify the 
effectiveness of the key modules of our proposed network DC-Net as well as its own. At the 
same time, we also conducted experiments on these two datasets, VideoSD [15] and Segtrack-
v2 [16]. The results on them again demonstrate the effectiveness of DC-Net. 
 

 
 
Fig. 1.  Forward and backward optical flow images of several video frames on DAVIS-2016 dataset. 
The forward optical flow is calculated from the displacement of pixels from the previous frame to the 
current frame, and the backward optical flow is calculated from the displacement of pixels from the 

next frame to the current frame. 

2. Related Work 
According to how much information about the target object is given, the problem of video 
object segmentation is usually divided into unsupervised and supervised (including fully-
supervised, semi-supervised and weak supervised) video object segmentation. In this paper, 
we mainly solve the Unsupervised Video Object Segmentation (UVOS), which extracts the 
most salient object mask without any manual annotation. 
Unsupervised video object segmentation (UVOS). Unsupervised video object segmentation 
is a challenging task, which doesn’t need any annotation of the video sequence but assumes 
that the object to be segmented has some salient features, for example, moving objects. Before 
the well-known CNNs structure appeared, the traditional methods mainly relied on hand-



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024                                     941 

crafted features to segment the primary object in video sequences, such as long-term point 
trajectory [17]-[21], motion boundary [22], objectness [23]-[27], and saliency [7, 28-30].  
In recent years, there have been many methods of constructing CNNs for UVOS [7-12, 31-
34]. In [9-12, 33], a CNN architecture is built with appearance model or motion information 
to segment the primary object in videos. For example, [9] used the artificially synthesized 
dataset and input the optical flow images obtained from two consecutive frames into the 
designed CNN architecture to obtain the motion label of each pixel. [11] introduced a dual-
stream network with appearance and motion cues for object segmentation. A visual memory 
module composed of convolutional Gated Recurrent Units [35] is designed in [11] to process 
those foreground objects whose initial state of the video sequence is still. FSEG [10] also 
designed a dual-stream fully convolutional neural network and fused motion and appearance 
features at the end of the network to generate segmentation mask.  [31] used pyramid dilated 
bidirectional ConvLSTM architecture to solve video salient object detection task, and apply it 
to the UVOS. EPO [33] combined geometric constraints with CNN to convert optical flow 
into long-term point trajectories to segment the main objects in the video. [34] used the 
teacher-student learning paradigm for UVOS. Most of the methods mentioned above take into 
account the appearance and temporal motion of prominent targets in video sequences, and 
design useful structures to exploit these features fully to perform accurate segmentation, which 
shows that the effective use of appearance and temporal motion information can improve the 
segmentation accuracy. Different from the methods using appearance and motion cues 
individually or separately, we try to effectively integrate appearance and motion feature 
streams, and generate high-quality segmentation masks by a co-enhance strategy. 
Dual-stream network for UVOS with motion and appearance cues. The dual-stream 
network architecture for UVOS is to allow the two streams to play their respective advantages 
for different inputs, and then to effectively integrate the features of the two streams. FSEG [10] 
fused an appearance stream and a motion stream for object inference and then performs the 
fusion operation of the two streams at the end of the network to obtain the final segmentation 
mask. It simply treats motion cues as equal to appearance information, without considering 
the characteristics of different input data. To learn the spatial-temporal feature, [11] utilized a 
dual-stream architecture and attempt to joint two streams via concatenation and a 
convolutional visual memory module. However, RNN-based methods are not conducive to 
modeling long-term video sequences and require a lot of computation and memory usage. [13] 
employed salient motion detection and object proposals techniques for unsupervised video 
object segmentation, but its appearance features are extracted using a well pretrained Mask R-
CNN [36] model, and the segmentation performance is very dependent on the reliability of the 
appearance model. EPO [33] exploited multiview geometric constraints combining epipolar 
distances with optical flow to define motion saliency and used a common appearance model 
to extract appearance features. These existing methods only consider single-direction optical 
flow to model motion saliency, which leads to insufficient learned motion information. In this 
paper, we take bidirectional optical flow into account to fully learn the motion cues of salient 
objects in a video sequence. In addition, different from the above dual-stream methods for 
UVOS, our proposed network designs special models to improve the feature integration 
capability, and then further optimizes the network through co-enhanced manner to improve 
the segmentation performance of the whole network. 
Multi-level features aggregation. In general, all level features have different contributions to 
video object segmentation. In CNNs structure, feature maps from low-layers encode low-level 
details information such as color and edge information, which is very beneficial for improving 
the segmentation accuracy. However, such features typically contain more noises and require 
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further processing. While top layers encode high-level context and semantic features help 
integrate global context into the network. Therefore, fusing different levels of features are 
commonly used in object saliency segmentation models to obtain more accurate mask [37-41]. 
Recently, many works [42-45] show that the importance of multi-level feature aggregation 
effectively and sufficiently for their task. For example, [42] combined several prediction 
outputs obtained by fusing some specific side outputs with short connections. [45] first 
integrated multi-level feature maps into multiple resolutions and then adaptively learned to 
combine these feature maps at each resolution. There are also many methods that use the skip-
layer architecture like U-shape network [46] due to its simplicity and effectiveness in the task 
of saliency target segmentation. However, most of methods based on U-shape architecture 
usually fuse low-level and high-level features with concatenation and addition directly, 
resulting in limited feature representation and robustness. Furthermore, although CNNs can 
restore the original feature map resolution by using up-sampling operations in the decoder, the 
detailed spatial context lost during the down-sampling process cannot be fully recovered, and 
the high-level semantic features are not fully utilized in the top-down transmission process. 
To remedy these problems mentioned above, in this paper, we use a channel attention 
mechanism to enhance the valuable channels in high-level semantic features and to catch the 
global context features while suppressing some useless information. Then pass it to each stage 
of the decoder for effective aggregation with different level features, leading to improved 
learning capability. 

3. Proposed method 
In this part, we first outline our proposed DC-Net, and then clarify details of each component 
we designed. Finally, we will introduce our training schema and loss function. 
 
 

 
 

Fig. 2. Pipeline of DC-Net. The frame 𝐼𝐼t  is input into the appearance stream, and the bidirectional 
optical flow predicted by the former frame  It-1 , the next frame It+1  and  It  are input into the motion 

stream. The two streams are combined to generate the final segmentation result through fusion 
modules. 
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3.1 Proposed network framework 
As illustrated in Fig. 2, DC-Net is a deep two-stream neural network for UVOS, consisting of 
an appearance stream, a motion stream and some fusion modules. The input of the appearance 
stream is a static image, and the appearance stream consists of two modules, Context Attention 
Module (CAM) and Multi-level Feature Aggregation Module (MFAM). The input of the 
motion stream is the forward and backward optical flow images [47].  After extracting the 
respective features, the refined motion saliency map is obtained by the Motion-cues Refine 
Module (MRM). Fusion Module (FM) is designed to obtain the fine-grained segmentation 
result by combining the information of these two streams via a co-enhance strategy.  

3.2 Appearance stream 
The appearance stream is an encoder-decoder structure similar to U-Net [46], using ResNet-
50 [58] as backbone of the encoder. The feature map is continuously down-sampled through 
the convolutional layer and pooling layer, and high-level semantic features are gradually 
obtained at the end of the encoder. 
First of all, in order to infer the relationship between the semantics of different salient objects 
or regions from a global perspective, and because receptive field of the high-level feature is 
relatively large and can better reflect the semantic information of the image, we first design 
the Context Attention Module (CAM) and applied it to the top-level features (the output of the 
last layer of the encoder). In this way, it is used to further enhance the high-level semantic 
features and model the relationship between the salient objects, ultimately helping to generate 
a more complete saliency map. 
Features at different scales contain different information of the image. Generally speaking, the 
low-level features mainly contain details such as edges and colors of the image, and the high-
level features are more concerned with the semantic information of the image. Moreover, the 
U-Shape networks make low-level features and high-level features to directly concatenate to 
fuse features of different scales. Unlike them, in order not to lose any information during the 
decoding process, we propose the Multi-level Feature Aggregation Module (MFAM) to 
effectively integrate low-level features, high-level features and enhanced high-level features 
(the output of CAM) to improve feature representation performance and the segmentation 
effect. As follows, we will introduce these proposed modules CAM and MFAM in detail. 
 

3.2.1 Context Attention Module 

 
Fig. 3. Context Attention Module 

 
Our proposed CAM is shown in Fig. 3. We firstly use a convolution operator and employ 
global average pooling [50] to obtain the global contextual information, and then enhance the 
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response of the corresponding channel according to the contribution of different channels to 
the salient features. Specifically, the process can be described as 
 𝑓𝑓𝑔𝑔 = 𝐺𝐺𝐺𝐺𝐺𝐺�𝜃𝜃1(𝑓𝑓ℎ)� (1) 
 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝜃𝜃2(𝑓𝑓ℎ) (2) 
 𝑓𝑓𝑎𝑎 =  𝜎𝜎 �𝜃𝜃4 �𝜃𝜃3�𝑓𝑓𝑔𝑔��� (3) 
 𝑓𝑓𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ×  𝑓𝑓𝑎𝑎 (4) 
where 𝑓𝑓ℎ refers to the high-level features from top layer, and 𝑓𝑓𝑔𝑔 refers to the feature that the 
high-level features after global average pooling 𝐺𝐺𝐺𝐺𝐺𝐺 processing.  𝑓𝑓𝑔𝑔 includes global context 
samantic information, 𝜎𝜎 is a sigmoid activation function, 𝜃𝜃𝑖𝑖 (𝑖𝑖 = 1,2,3,4)  refer to 
1×1convolution operation, × denotes element-wise multiplication. To enhance the saliency 
response of target objects and to alleviate the problem of insufficient exploit of high-level 
semantic features. The output feature 𝑓𝑓𝑐𝑐 after CAM will be passed to the various MFAMs of 
the decoder, which will be elaborated in the next part. 

3.2.2 Multi-level Feature Aggregation Module 
We introduce a multi-level feature aggregation module (MFAM) to fully integrate low-level 
features, high-level features, and global context semantic features to improve segmentation 
performance, which is illustrated in Fig. 4. We take the output of the previous layer in the 
decoder as the high-level feature 𝑓𝑓ℎ𝑖𝑖 (𝑖𝑖 = 1, 2, 3), the low-level 𝑓𝑓𝑙𝑙𝑖𝑖 (𝑖𝑖 = 1, 2, 3) feature is the 
shallow layer feature of the corresponding encoder, and the global context semantic feature 
𝑓𝑓𝑐𝑐  is the output of the CAM. 
 

 
 

Fig. 4. Multi-level Feature Aggregation Module 
 
Specifically, we first compress the low-level features through a 1×1 convolution layer 𝜃𝜃5 so 
that it has the same number of channels as the corresponding high-level features, and then the 
high-level features are fed into a 3×3 convolution layer 𝜃𝜃6 . After up-sampling, obtain an 
attention saliency map 𝑓𝑓ℎ𝑖𝑖 with semantics. Further, we apply element-wise multiplication on 
𝑓𝑓ℎ𝑖𝑖  and the compressed low-level feature 𝑓𝑓𝑙𝑙𝑖𝑖 . Similarly, we perform the mirror operation 
between low-level features and the output 𝑓𝑓𝑐𝑐 from CAM. Finally, concatenate the two output 
feature maps, and through a 3×3 convolution layer 𝜃𝜃8 to produce the final aggregation features. 
The above process can be described as 
 𝑓𝑓𝑙𝑙𝑖𝑖 =  𝜃𝜃5�𝑓𝑓𝑙𝑙𝑖𝑖�  (5) 
 𝑓𝑓ℎ𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 �𝜃𝜃6�𝑓𝑓ℎ𝑖𝑖�� (6) 
 𝐹𝐹𝑙𝑙ℎ𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑓𝑓𝑙𝑙𝑖𝑖  ×  𝑓𝑓ℎ𝑖𝑖� (7) 
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 𝑓𝑓𝑐𝑐 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝜃𝜃7(𝑓𝑓𝑐𝑐)� (8) 
 𝐹𝐹𝑙𝑙𝑐𝑐𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑓𝑓𝑙𝑙𝑖𝑖  ×  𝑓𝑓c� (9) 
 𝐹𝐹𝑜𝑜𝑖𝑖 = 𝜃𝜃8�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝑙𝑙ℎ𝑖𝑖  ,𝐹𝐹𝑙𝑙𝑙𝑙𝑖𝑖 � � (10) 
where 𝜃𝜃𝑡𝑡( 𝑡𝑡 = 5, 6,7, 8) refers to convolution layer, 𝐹𝐹𝑙𝑙ℎ𝑖𝑖  indicates the 𝑖𝑖-th stage comprehensive  
features that combines low-level and high-level features, 𝐹𝐹𝑙𝑙𝑐𝑐𝑖𝑖 indicates the  𝑖𝑖 -th stage 
comprehensive features that  combines low-level and global context features, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is 
up-sampling operation via bilinear interpolation, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  represents the ReLU activation 
function, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is concatenation operation, and 𝑖𝑖  is the stage index. 𝐹𝐹𝑜𝑜𝑖𝑖 indicates the 
aggregated features. 

3.3 Motion stream 
As is shown in Fig. 2, the motion stream is siamese neural network architecture, which is 
composed of an encoder and a decoder. Considering that the optical flow images do not have 
rich and detailed appearance feature compares with RGB images, ResNet-34 [48] is used as 
the encoder in order to accelerate the network inference speed and reduce the number of 
network parameters. The forward optical flow and the backward optical flow are 
simultaneously fed into the motion stream, and then the two types of features of the decoder 
are sent to the Motion-cues Refine Module together to obtain the final single-channel motion 
saliency map. The ASPP [51] module is introduced to model the long-range dependencies of 
the feature map and integrates local and global feature representations through a series of 
dilated convolution operations. 
In order to effectively integrate the forward optical flow features and the backward optical 
flow features, we designed a motion-cues refine module (MRM), as shown in Fig. 5, which 
can make full use of the motion cues of salient objects to produce more complete motion 
saliency map.  
 

 
 

Fig. 5. Motion-cues Refine Module 
 
Fig. 5 shows the Motion-cue Refine Module we proposed. 𝑓𝑓𝑓𝑓 and 𝑓𝑓𝑏𝑏 are the forward optical 
flow feature and backward optical flow feature through the decoder respectively. Further, each 
of them is applied a 3×3 convolutional layer and a sigmoid function to get their respective 
saliency attention maps 𝑓𝑓𝑏𝑏𝑏𝑏 and 𝑓𝑓𝑓𝑓𝑓𝑓. Then, we apply element-wise multiplication between 
𝑓𝑓𝑏𝑏𝑏𝑏 and each channel slice of 𝑓𝑓𝑓𝑓. This element-wise multiplication is essentially an attention 
mechanism, which is sample and efficient. However, due to the complexity of the motion and 
the frame rate of the video data, the corresponding part of the motion part represented in the 
optical flow may be predicted to be 0. A simple multiplication operation will suppress this part  
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of the target. In this case, the complete segmentation of moving objects cannot be maintained. 
Based on the above considerations, we use a skip connection that adds the original feature. 
With this element-wise addition operation, the motion parts predicted by the optical flow in 
other directions can be retained without affecting the common prominent targets or parts. 
Asymmetric operation is also applied to the backward optical flow feature and the saliency 
attention map generated by the forward optical flow. Finally, concatenate these two features, 
and the final refined motion saliency map 𝑓𝑓𝑚𝑚  is obtained through a 3×3 convolution and 
sigmoid activation function. The sigmoid activation function is to compress the pixel value 
between [0, 1]. 
The main process can be described as 
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝜎𝜎 �𝜃𝜃9�𝑓𝑓𝑓𝑓��    (11) 
 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜎𝜎�𝜃𝜃10(𝑓𝑓𝑏𝑏)�  (12) 
 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓 × 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑓𝑓 (13) 
 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏 × 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑏𝑏 (14) 

 𝑓𝑓𝑚𝑚 = 𝜎𝜎 �𝜃𝜃11 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏��� (15) 
 
where 𝜃𝜃𝑙𝑙(𝑙𝑙 = 9, 10, 11) refers to 3×3 convolutional operation, 𝜎𝜎  is the sigmoid activation 
function,  + denotes element-wise additions. 𝑓𝑓𝑚𝑚 is the final output of the motion stream, which 
will be fed to our proposed fusion module and effectively fused with the output of each stage 
of the decoder in the appearance stream. Through our fusion strategy, the final segmentation 
result of the entire DC-Net is obtained. 

3.4 Dual-stream fusion and Co-enhanced strategy 
In general, the appearance stream focuses on the appearance features of salient objects in a 
single frame, such as edges, textures and other details, but it lacks the temporal continuity of 
foreground objects between frames. The results segmented by the appearance stream may 
contain non-motion salient parts. While the motion stream mainly concentrates on the motion 
cues of the object, which can fully extract the motion pattern of the foreground target between 
frames. But the motion feature does not have the rich detail information as the appearance 
stream, especially the fine contour details. Both appearance and motion stream can only 
achieve limited segmentation capabilities. If the dual-stream feature can effectively make up 
for the shortcomings of the other side, the segmentation performance will have a greater 
improvement. 
 

 
Fig. 6. Fusion Module 
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Based on the above discussion, we designed a dual-stream Fusion Module to combine dual-
stream features in an effective way, as shown in Fig. 6. In addition, in order to prevent the 
single-stream network from overfitting the respective input information, we propose a co-
enhance strategy. Through multi-task joint training, the joint loss continuously updates the 
parameters of the dual-stream network during the backpropagation process, and the 
appearance stream can be gradually concentrated on the target with salient motion, resulting 
in more accurate segmentation result. Conversely, the segmentation loss in the appearance 
stream is fed back into the motion stream to enhance the motion refinement. Thus, the entire 
DC-Net can further improve the segmentation ability in a co-enhance manner. 
In Fig. 6, 𝑓𝑓ℎ𝑖𝑖(𝑖𝑖 = 1,2,3,4) indicates 𝑖𝑖-th stage features of the decoder in appearance stream. 𝑓𝑓𝑚𝑚 
refers to the output of motion stream. The fusion strategy can be formulated as: 
 𝑓𝑓𝑥𝑥𝑖𝑖 = 𝜃𝜃12�𝑓𝑓ℎ𝑖𝑖� (16) 
 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝜎𝜎�𝑓𝑓𝑥𝑥𝑖𝑖 × 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑓𝑓𝑚𝑚) + 𝑓𝑓𝑥𝑥𝑖𝑖� (17)             
where 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖  (𝑖𝑖 = 1, 2, 3, 4) indicates 𝑖𝑖-th stage output, 𝑓𝑓ℎ𝑖𝑖 is 𝑖𝑖-th stage features of the decoder 
in the appearance stream. By the way, before the motion saliency map is sent to each stage of 
the appearance stream, it needs to be up-sampled (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) to the same size as the output 
feature map of each stage of the appearance stream. 
We claim that only when both the appearance stream and the motion stream have strong 
segmentation capabilities, the DC-Net that merges the two streams could have well 
segmentation performance. In this paper, we used multi-task pipeline training to train our 
proposed dual-stream network in a co-enhance process. First, we initialize the encoder of 
appearance stream using a ResNet-50 [48] pretrained on ImageNet [52]-[53], using static-
image data to fine-tune the appearance stream. Second, we use PWC-Net [47] to calculate the 
forward and backward optical flow on our training data, and then use [54] to convert the optical 
flow into three-channel images. Third, a ResNet-34 [48] model pretrained on ImageNet is used 
to initialize our motion stream, and then is trained on optical flow images which are 
synthesized on our video training data. Lastly, the two streams conduct joint training and use 
our proposed fusion strategy to fuse the motion saliency map and the appearance saliency map. 
to obtain the final segmentation mask in a co-enhance process.  

3.5 Loss Function 
By the means of multi-task training schema, we first train the two streams separately to take 
advantage of the single stream. Then dual stream joint training to further improve the overall 
segmentation performance. 
We use binary cross entropy loss, which is commonly used loss function in the field of video 
object segmentation. For joint training, our network gets the final segmentation mask after the 
last fusion module. When training individually, each stream gets its own segment prediction. 
The binary cross entropy loss can be calculated as 
 𝐿𝐿(𝑀𝑀,𝐺𝐺) =  − 1

𝑁𝑁
∑ [𝐺𝐺𝑥𝑥 log(𝑀𝑀𝑥𝑥) + (1 − 𝐺𝐺𝑥𝑥) log(1 −𝑀𝑀𝑥𝑥)]𝑥𝑥  (18) 

where 𝑁𝑁 refers to the total number of pixels in the input video frame. 𝐺𝐺𝑥𝑥  represents the ground 
truth label at the pixel 𝑥𝑥  and the 𝑀𝑀𝑥𝑥  is the corresponding prediction at pixel 𝑥𝑥 . For joint 
training, our total loss function as follows 
 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ 𝛽𝛽𝑖𝑖3

𝑖𝑖=1 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  (19) 
where 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 refers the main loss corresponding to the last output in our fusion module and 
𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 represents the auxiliary loss of the rest fusion module outputs. 𝛽𝛽𝑖𝑖 is the weight of different 
loss at each fusion module, and the specific settings are 𝛽𝛽1 = 0.4,  𝛽𝛽2 = 0.6,  𝛽𝛽3 = 0.8. 
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4. Experiments 
In this part, we conducted comprehensive studies to evaluate our proposed method.  For the 
appearance stream, we take advantage of static-image saliency datasets: DUTS [55] and 
MSRA10K [56]. DAVIS-2016 [14] dataset is used to train our motion stream and the whole 
DC-Net. From the point of view of the size of the model and the amount of computation, we 
adopt the existing optical flow estimation method PWC-Net [47] to estimate the forward and 
the backward optical flow in DAVIS-2016 dataset. The forward optical flow is calculated from 
the displacement of pixels from the previous frame to the current frame, and the backward 
optical flow is calculated from the displacement of pixels from the next frame to the current 
frame. We augment all the training data by performing random horizontal flip and randomly 
clipping the images to the size of 320 ×320. Mini-batch Stochastic gradient descent (SGD) 
optimizer is used to train the whole DC-Net, we set the initial learning rate is 10-4, weight 
decay is 0.0005 and momentum is 0.9. We implement the whole DC-Net with Pytorch [57].  
 

4.1 Datasets 
The proposed DC-Net is evaluated in the following three Datasets:  
DAVIS-2016 [14] is a large-scale data set used for video object segmentation, and all video 
frames have pixel-level annotations. There are many challenges for UVOS in DAVIS-2016, 
such as background occlusion, multi-target interference, appearance deformation, fast motion, 
motion blur.  
VideoSD [15] contains 10 low-resolution video sequences under the natural scene. 
Segtrack-v2 [16] is another benchmark dataset widely used for video object segmentation. 
There are 1,066 video frames in total, and each frame also has pixel-level annotation. The main 
challenges are drastic appearance deformation, uneven lighting, complex motion states, and 
occlusion. 
We use the three general standard metrics proposed in [14], namely the region similarity J, the 
contour accuracy F and the temporal stability T.  

4.2 Effectiveness of the proposed method 
We first study the effectiveness of the Motion-cues Refine Module (MRM) and the rationality 
of the introduction of bidirectional optical flows. The results are shown in Table 1. When only 
using the single-direction optical flow (without MRM), we observe a significant performance 
drop (mean J: 70.5→56.9, mean F: 61.8→50.4 in DAVIS-2016), and the mean T evaluation 
index increased by 46.7%. That clearly shows the effectiveness of our Motion-cues Refine 
Module (MRM), which can fully leverage the motion cues of the foreground object in video 
sequences. 
 

Table 1. Comparative study of single-direction optical flow and bidirectional optical flow 
Measures Single-direction optical 

flow (without MRM) 
Bidirectional optical flow 
(with MRM) 

J mean 56.9 70.5 
F mean 50.4 61.8 
T mean 87.3 40.6 

 
Next, we conduct the ablation study on the DAVIS-2016 dataset to verify the effectiveness of 
the proposed network architecture and key modules. We adopt the model like U-Net [47] as 
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the baseline model which concatenates high-level features after up-sampling and low-level 
features directly. 

 
Table 2. Ablation study on Davis-2016. (B: Motion stream with bidirectional optical flow; A: 
Appearance features enhancement operations (CAM, MFAM);  S: Motion stream with single-

direction optical flow) 
Model J Mean 
Baseline 67.7 
Basline+B 70.3 
Baseline+A 74.1 
Baseline+A+S 76.8 
Baseline+A+B (DC-Net) 79.6 

 
As shown in Table 2, the MRM significantly improved the baseline model, and the J mean 
value has increased from 67.7% to 70.3%. The third model (Baseline+A), which uses the 
appearance alone, only use the main loss which is calculated by the cross entropy between the 
output of fusion module in the appearance stream and the ground-truth label. As it has no 
motion stream, so no auxiliary loss could be used.  The fourth (Baseline+A+S) and the fifth 
model (Baseline+A+B (DC-Net)) are all composed of appearance stream and motion stream, 
the difference between these two models is that the former uses single-direction optical flow 
while the later one uses bidirectional optical flow. Both of them are jointly trained by the main 
loss and the auxiliary loss.  It can be seen that from both models with joint loss (the fourth and 
the fifth model) are better than the model only use main loss (the third model), and the J Mean 
increased from 74.1% to 76.8%，79.6% respectively, which prove the effectiveness of the 
joint loss and validate the proposed co-enhance strategy. Thus, we attribute this to the well-
designed dual-stream co-enhanced network, which includes effective feature aggregation 
modules and full utilization of bidirectional motion cues. 
 

4.3 Comparative experiments on DAVIS-2016 
We compare our network DC-Net with some SOTA methods on DAVIS-2016 dataset, 
including ARP [25], FST [22], MSG [20], KEY [26], FSEG [10], LMP [9], PDB [31], UOVOS 
[13], LVO [11], MotAdapt [34], LSMO [12], EPO [33]. 
 

Table 3. Quantitative results on DAVIS-2016 
Measure ARP FST MSG KEY FSEG LMP PDB UOVOS LVO MotAdapt LSMO EPO Ours 

J 
Mean↑ 76.3 57.5 54.3 59.6 71.6 69.7 77.2 77.8 75.9 77.2 78.2 80.6 79.6 
Recall↑ 89.2 65.2 63.6 67.1 87.7 82.9 90.1 93.6 89.1 87.8 89.1 95.2 92.3 
Decay↓ 3.6 4.4 2.8 7.5 1.7 5.6 0.9 2.1 0.0 5.0 4.1 2.2 3.0 

F 
Mean↑ 71.1 53.6 52.5 50.3 65.8 66.3 74.5 72.0 72.1 77.4 75.9 75.5 76.9 
Recall↑ 82.8 57.9 61.3 53.4 79.0 78.3 84.4 87.7 83.4 84.4 84.7 87.9 87.0 
Decay↓ 7.3 6.5 5.7 7.9 4.3 6.7 -0.2 3.8 1.3 3.3 3.5 2.4 3.3 

T Mean↓ 35.9 29.3 26.3 21.0 29.5 68.8 29.1 33.0 26.5 27.9 21.2 19.3 24.5 

 
As shown in Table 3, we can see that DC-Net is superior to most methods on DAVIS-2016 
benchmark. Compared with the best method EPO [33], although the relevant indicators of our 
J mean are slightly lower, our F mean is higher than that of EPO, with an increase of 1.4%. 
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In Table 3, some of the other dual-stream based methods also using leverage both appearance 
and motion cues, e.g. FSEG [10], LVO [11], MotAdapt [34], UOVOS [13]. Our method has a 
great transcendence than all of these methods. The main reason lies in that these algorithms 
only use single-direction optical flow, without fully considering the motion cues of foreground 
objects in the video sequence. In contrast, by introducing the forward and backward optical 
flow and the fusion in the decoding part, our method can combine the motion information and 
the appearance information more effectively to obtain better feature representation. Thanks to 
our proposed MRM, more motion information can be exploited so that our method can achieve 
great performance. 

 

 
 

Fig. 7. Per-sequence results of region similarity on DAVIS-2016: Regional similarity results in each 
video sequence with six unsupervised methods, where light blue represents our results. 

 
Fig. 7 shows the results of our regional similarity comparison on each sequence with the same 
methods using appearance and motion saliency or other temporal information. From Fig. 7 we 
can see that our method achieved much better scores than other UVOS methods in some video 
sequences, such as BLACKSWAN, CAR-ROUNDABOUT, CAR-SHADOW, 
DRIFTCHICANE and SOAPBOX sequences. These sequences have dynamic background 
interference and fast object moving challenges. That proves the advanced nature of our 
proposed method to meet these challenges. 

4.4 Evaluation on VideoSD and Segtrack-v2 
For completeness, we also perform experiments on the VideoSD [15] and SegTrack-v2 [16] 
datasets. The results are shown in Table 4.  DC-Net performs better (77.1% in term of mean 
J) than [22, 7, 58, 59, 13] on VideoSD dataset. Especially for UOVOS [13] which achieved 
the best results currently in existing methods, we outperform it by 11.9%. The primary 
challenge of this dataset is that the resolution is very low and there is motion blur. The results 
show that our proposed network has well adaptability in these situations. 
The evaluation result of DC-Net on SegTrack-v2 [16] is shown in Table 5. Compared with 
the state-of-the-arts, DC-Net can also rank in the forefront on completely unfamiliar dataset. 
Removing birdfall and worm, the only sequences we perform poor, the results improve to 
71.5%. In birdfall and worm video sequences, there is extremely complex background 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024                                     951 

interference, and the scale of the foreground target is very small, which makes our appearance 
stream unable to detect this situation well. 
 

Table 4. Quantitative results on VideoSD over Mean J 
Method FST SAGM TIS OSVOS UOVOS Ours 
Mean J 61.6 49.7 61.6 44.7 65.2 77.1 

 
Table 5. Quantitative results on Segtrack-v2. For the two video sequences of birdfall and worm, our 

method does not perform well. If these two results are removed, the overall performance will be 
improved to 71.6. 

Method KEY FSEG LVO FST LSMO UOVOS EPO Ours 
Mean J 57.3 61.4 57.3 53.5 59.1 64.3 70.9 62.8 

 

4.5 Qualitative Results 

 
 

Fig. 8. Qualitative results of ablation study. Appearance: visual result of appearance stream. 
Appearance+S: The result obtained by using only single-direction optical flow in the motion stream. 

Appearance+B: The result of using bidirectional optical flow in the motion stream, that is, the 
proposed DC-Net.  GT: The ground truth sementation corresponding to the video frame. 

 
Fig. 8 is the qualitative results of the ablation study. From Fig. 8, we can see that the 
introduction of bidirectional optical flow can indeed deal with some challenges such as 
background occlusion (the head of libby in the third rocw), multiple salient objects (the small 
car in the second row and haystack in the fourth row), and achieve better results.  
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Fig. 9. Qualitative comparison with state-of-the-art methods on DAVIS-2016. The comparison of the 
partial results of the six unsupervised method. The first row: the groundtruth of the given video frame. 
The rest is the segmentation results of the given video frame of each video sequence from ours and the 

other six unsupervised methods. 
 
We also provide some visual results of different mainstream algorithms to prove the advanced 
nature of our method. As shown in Fig. 9, the proposed DC-Net can deal with various 
challenging scenarios, including dynamic background, fast-motion, motion blur, low 
resolution, appearance change, interacting objects. etc. The sequences of kite-surf and 
breakdance, which existing dynamic background (waving water in kite-surf sequence, for 
breakdance sequence, there are people jumping and applauding in the background), some 
state-of-the-art methods like FSEG [10], LVO [11], LMP [9], UOVOS [13] regard the 
background area as the foreground segmentation, resulting in poor results. In drift-straight 
video sequence, there are scenes with fast motion and motion blur, which often leads to 
inaccurate motion estimation, that is, poor optical flow quality. As shown in the fourth column 
of Fig. 9, our method can achieve results close to the ground truth. Overall, our method can 
cope with these challenges and segment the most salient object with complete and accurate 
mask. 
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Fig. 10. Visual results on SegTrack-v2 and VideoSD dataset. The first to fourth rows are the four 
video sequence frames of the SegTrack-v2 dataset, and the remaining four rows are the visual 

segmentation results of the partial sequences of the VideoSD dataset. 
 
Fig. 10 shows the visual results of partial sequences on VideoSD and SegTrack-v2 datasets, 
which are completely unfamiliar datasets, and not used in any training process for our network. 
VideoSD and SegTrack-v2 dataset contain many challenging cases, such as appearance 
variation (the bird_of_paradise and bmx sequences in SegTrack-v2, BR130T and DO02_001 
sequences in VideoSD), background clutter (AN119T and BR130T sequences in VideoSD), 
uneven light changes (parachute in SegTrack-v2), we can see that our method can effectively 
handle these situations. 
 
 
 



954                                                                                                                         Zhu et al.: Dual-stream Co-enhanced Network for 
Unsupervised Video Object Segmentation 

5. Conclusion 
In this paper, a novel deep Dual-stream Co-enhanced Network (DC-Net) is proposed for 
UVOS. A motion cues refine module is designed to generate a more complete and accurate 
motion saliency map based on bidirectional optical flow. A context attention module and a 
multi-level features aggregation module are designed in appearance stream to integrate 
different level information and produce high-quality appearance saliency features. And the 
two streams are effectively fused to obtain the final segmentation result in a co-enhance 
manner. Experimental results on three datasets demonstrate that the proposed motion 
refinement and feature aggregation methods are highly beneficial for unsupervised video 
object segmentation and the proposed dual-stream co-enhanced network has achieved 
comparable results with some state-of-the-art methods. 
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