• Title/Summary/Keyword: Unstructured Dynamic Meshes

Search Result 11, Processing Time 0.027 seconds

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

Computational fluid dynamic simulation with moving meshes

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2013
  • We present a new computational fluid dynamic (CFD) simulation code. The code employs the moving and polyhedral unstructured mesh scheme, which is known as a superior approach to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for surfaces of every Voronoi cell to update the hydrodynamic states as well as to move former generated meshes. For the second-order accuracy, the MUSCL-Hancock scheme is implemented. To increase efficiency for generating Voronoi tessellation we also develop the incremental expanding method, by which the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We will discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

A Dynamic Adaptation Technique on 2-D and 3-D Unstructured Meshes (2차원과 3차원에서의 비정렬 동적 적응격자 형성법에 관한 연구)

  • Park Y. M.;Oh W. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.146-152
    • /
    • 2000
  • Two and Three dimensional dynamic adaptation code is developed for transient computations. This code involves mesh refinement and coarsening to either add points in high gradient regions of flow or remove points where they are not needed, for high spatial accuracy. Temporary cell algorithm is used to maintain the original grid quality. To show the assessment of the accuracy and efficiency, two dimensional study and unsteady flows are computed. Also, three dimensional steady computations are made to assess the refinement using temporary cell algorithm. The result shows the high spatial accuracy primarily in discontinuity regions in steady and unsteady computation.

  • PDF

Numerical Study of Flow Control of Dynamic Stall Using Continuous Blowing/Suction (정적 Blowing/Suction을 이용한 동실속 유동 제어에 관한 수치적 연구)

  • Choi S. Y.;Kwon O. J.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-119
    • /
    • 2004
  • The effect of a continuous blowing or suction on an oscillating 2-D NACA0012 airfoil was investigated numerically for the dynamic stall control. The influence of control parameter variation was also studied in the view point of aerodynamic characteristics. The result showed that the blowing control kept a higher lift drag ratio before stall angle but the dynamic stall angle was not exceed to without control result. As the slot position was closer to leading edge, the positive control effect becomes greater. The stronger jet and the smaller jet angel made more favorable roles on the control performance. In the cases of the suction, the overall control features were similar to those of the blowing, but dynamic stall angle was increased, i.e. suction was more effective to control dynamic stall. It was also founded that the suction control was showed better control effect as the slot position moves to trail edge within thirty percentage of chord length. In the simulation for the jet strength and the jet angle control, the same tendencies were observed to those of blowing cases.

  • PDF

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

DEVELOPMENT OF HIGH-ORDER ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR UNSTEADY FLOW SIMULATION (비정상 유동 해석을 위한 고차정확도 격자 적응 불연속 갤러킨 기법 개발)

  • Lee, H.D.;Choi, J.H.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.534-541
    • /
    • 2010
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin method has been developed for the numerical simulation of unsteady flows on unstructured meshes. A multi-level solution-adaptive mesh refinement/coarsening technique was adopted to enhance the resolution of numerical solutions efficiently by increasing mesh density in the high-gradient region. An acoustic wave scattering problem was investigated to assess the accuracy of the present discontinuous Galerkin solver, and a supersonic flow in a wind tunnel with a forward facing step was simulated by using the adaptive mesh refinement technique. It was shown that the present discontinuous Galerkin flow solver can capture unsteady flows including the propagation and scattering of the acoustic waves as well as the strong shock waves.

  • PDF

Transonic/Supersonic Nonlinear Aeroelastic Analysis of a Complete Aircraft Using High Speed Parallel Processing Technique (고속 병렬처리 기법을 이용한 전기체 항공기 형상의 천음속/초음속 비선형 공탄성 해석)

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kwon, Oh-Joon;Paek, Seung-Kil;Hyun, Yong-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.46-55
    • /
    • 2002
  • A nonlinear aeroelastic analysis system in transonic and supersonic flows has been developed using high speed parallel processing technique on the network based PC-clustered machines. This paper includes the coupling of advanced numerical techniques such as computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD). The unsteady Euler solver on dynamic unstructured meshes is employed and coupled with computational aeroelastic solvers. Thus it can give very accurate engineering data in the structural and aeroelastic design of flight vehicles. To show the great potential of useful application, transonic and supersonic flutter analyses have been conducted for a complete aircraft model under developing in Korea.

Numerical Simulation of Slamming Phenomena for 2-D Wedges (2차원 쐐기형 구조물의 슬래밍 현상에 대한 수치 유동해석)

  • Yum, Deuk-Joon;Yoon, Bum-Sang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Numerical analysis for slamming impact phenomena has been carried out when 2-dimensional wedge shaped structure with finite deadrise angles enter the free surface by using a commertial CFD code, FLUENT. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct scheme (or PLIC-VOF scheme) is used for the tracking of the deforming free surface. User defined function of 6 degrees of freedom motion and moving dynamic mesh option are used for the expression of the downward motion of the structure and deforming of unstructured meshes adjacent to the structure. The magnitude and the location of impact pressure and the total drag force which is the summation of pressures distributed at the bottom of the structure are analyzed. Results of the analysis show good agreement with the results of similarity solution, asymptotic solution and the solution of BEM.