• Title/Summary/Keyword: Unstructured Cartesian Grids

Search Result 6, Processing Time 0.016 seconds

An Implicit Pressure Correction Method for Incompressible Navier-Stokes Equations on Unstructured Cartesian Grids

  • Pan Dartzi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.15-16
    • /
    • 2003
  • An implicit pressure correction method on unstructured Cartesian grid is developed for the incompressible Navier-Stokes equations. An immersed boundary method is also incorporated to treat the body geometry. Tests show that with an appropriate amount of dissipation, the method is second order accurate both in time and space. The driven cavity flows with and without immersed bodies are computed to demonstrate the capability of the present scheme.

  • PDF

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Computation of the Euler Equations on the Adaptive Cartesian Grids Using the Point Gauss-Seidel Method (적응형 Cartesian 격자기법에서 Point Gauss-Seidel 기법을 사주한 Euler 방정식 계산)

  • Lee J. G.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.93-98
    • /
    • 2001
  • An adaptive Cartesian grid method having the best elements of structured, unstructured, and Cartesian grids is developed to solve the steady two-dimensional Euler equations. The solver is based on a cell-centered finite-volume method with Roe's flux-difference splitting and implicit point Gauss-seidel time integration method. Calculations of several compressible flows are carried out to show the efficiency of the developed computer code. The results were generally in good agreements with existing data in the literature and the developed code has the good ability to capture important feature of the flows.

  • PDF

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

Numerical Simulation of Wind Pressures on a High-rise Building by Auto-mesh System

  • Tang, Yuanzhe;Cao, Shuyang
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • This paper describes large eddy simulation of wind pressures on a square cylinder in a uniform flow and a high-rise building immersed in an atmospheric turbulent boundary layer. For the atmospheric boundary layer case, the inflow turbulence is generated by a numerical wind tunnel. In the numerical simulation, particular attention is devoted to the performance of an auto hexahedral non-structural mesh. Both simulations are performed for three grid systems: an auto hexahedral non-structured grid, a structured Cartesian grid and a non-structured triangular prism grid, and for three grid numbers. The present study shows that the auto hexahedral unstructured mesh achieves the best simulation results for wind pressures on the square cylinder and the high-rise building. When the grid number is sufficiently large, the differences among the results obtained from the three investigated grid systems are not significant. However, the advantage of the auto hexahedral unstructured mesh becomes clear when the grid number decreases, because it enables a balanced distribution of orthogonal grids. The results described in this paper demonstrate that the auto hexahedral non-structured mesh has good potential applicability to simulation of urban flows.

APPLICATION OF AN IMMERSED BOUNDARY METHOD TO SIMULATING FLOW AROUND TWO NEIGHBORING UNDERWATER VEHICLES IN PROXIMITY (인접한 두 수중운동체 주위의 유동 해석을 위한 가상경계법의 적용)

  • Lee, K.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Analysis of fluid-structure interaction for two nearby underwater vehicles immersed in the sea is quite challenging because simulation of flow around them is very difficult due to the complexity of underwater vehicle shapes. The conventional approach using body-fitted or unstructured grids demands much time in dynamic grid generation, and yields slow convergence of solution. Since an analysis of fluid-structure interaction must be based on accurate simulation results, a more efficient way of simulating flow around underwater vehicles, without sacrificing accuracy, is desirable. An immersed boundary method facilitates implementation of complicated underwater-vehicle shapes on a Cartesian grid system. An LES modeling is also incorporated to resolve turbulent eddies. In this paper, we will demonstrate the effectiveness of the immersed boundary method we adopted, by presenting the simulation results on the flow around a modeled high-speed underwater vehicle interacting with a modeled low-speed one.