• Title/Summary/Keyword: Unsteady state analysis

Search Result 165, Processing Time 0.026 seconds

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Unsteady Numerical Analysis of Transverse Injection Jet into Supersonic Mainstream (초음속 주유동에 수직 분사되는 제트의 비정상 수치해석)

  • Choi Jeong-Yeol;Yang Vigor
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.126-131
    • /
    • 2003
  • A series of computational simulations have been carried out for supersonic flows in a scram jet engine with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure varying from 0.5 to 1.5 MPa. The corresponding equivalence ratios are 0.167 - 0.50. The work features detailed resolution of the flow dynamics in the combustor, which was not typically available in most of the Previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between shock waves and shear layer may cause a large excursion of flow oscillation. The role of the cavity and injection pressure are examined systematically.

  • PDF

Unsteady Transient Flowfield in an Integrated Rocket Ramjet Engine (램제트 엔진의 비정상 천이 유동에 관한 연구)

  • H.K. Sung;Vigor Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.74-92
    • /
    • 2000
  • A numerical analysis has been conducted to study the transient flowfield during the transition from the booster to sustainer phase in an integrated rocket ramjet (IRR) propulsion system. Emphasis is placed on the unsteady inlet aerodynamics, fuel/air mixing in an entire ramjet engine during the flow transient phase. The computational geometry consists of the entire IRR engine, including the inlet, the combustion chamber, and the exhaust nozzle. Turbulence closure is achieved using a low-Reynolds-number two-equation model. The governing equations are solved numerically by means of a finite-volume, preconditioned flux-differencing scheme over a wide range of Mach umber. Various important physical processes are investigated systemically, including terminal shock train.

  • PDF

Exergy Analysis of On/Off Controlled Heat Pump

  • Jang, Ki-Tae;Nam, Kwan-Woo;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.22-32
    • /
    • 1999
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the unsteady response of a heat pump. First, a basic heat pump cycle is examined at a steady state to show the general trends of exergy variations in each process of the cycle. Entropy generation issue for the heat exchangers is discussed to optimize the heat pump cycle. Secondly, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Thirdly, the exergy destruction rate of the heat pump with On/Off operation is calculated by simulating the thermodynamic states of the working fluid in the condenser and the evaporator. The inefficiency of On/Off operation during the transient period is quantitatively described by the exergy analysis.

  • PDF

Elasto-viscoplastic Dynamic Analysis of Subterranean Storage Cavern for Petroleum Reserve (석유비축을 위한 지하저장공동의 탄.점소성 동적해석)

  • 진지섭;김수석
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1989
  • In recent times, the subterranean caverns for storing crude oils and oil products are increasingly needed. The elasto-VIScoplastic DYNamic finite element analysis program(VISDYN) has been developed in order to investigate dynamic responses of the storage cavity. And validity of the program is studied through a numerical example. Mohr-Coulomb yield criterion is adopted and associated flow rule is assumed. Geometrically nonlinear behaviour is taken into account using a total Lagrangian formulation. In dynamic deformation reponses, the difference between the steady state displacements and the unsteady state ones by the static analysis can be neglected.

  • PDF

Analysis of Elastohydrodynamic Lubrication Film under Dynamic Loads in Engine Valve Train System with Multigrid Multilevel Method (멀티그리드 멀티레벨 기법을 이용한 엔진 밸브 트레인의 동하중 탄성 유체 윤활 유막 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.151-159
    • /
    • 1998
  • 디젤 엔진의 푸쉬로드 타입의 밸브 트레인에서의 힘의 전달 과정을 기구학적 응용을 통하여 구하였다. 이러한 힘의 최종 전달 단계인 캠과 평판 종동물의 접촉에서의 작용하중과 상대 운동 속도를 계산하였고 접촉면에서의 유막 두께를 고체면의 탄성변형을 고려하여 계산하였다. 특히 탄성 유체 윤활의 해석을 하는데 있어서 안정성과 수렴성이 우수한 멀티그리드 멀티레벨 기법을 사용하였으며 동하중 상태를 고려하여 유막 두께를 계산하고 기존의 정상상태의 해석해와 비교하였다.

  • PDF

A Study on the Thermal Characteristics of a High Precision Machine Tool Spindle (고정밀 공작기계주축계의 열특성 해석에 관한 연구)

  • 김용길
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.47-51
    • /
    • 1996
  • Unsteady-state temperature distributions and thermal deformations of a spindle system are studied in this paper. Three dimensional model is built for analysis, and the amount of heat generation of bearing and the thermal characteristic values including heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the termal boundary values. Numerical results are compared with the measured data. The results show that thermal deformations and temperature distributions of a high precision spindle system can be reasonably estimated using the three dimensional model and the finite element method.

  • PDF

A Study on the Temperature Analysis of Casting Mould by Boundary Element Method (경계요소법을 이용한 주철제 주형의 온도해석에 관한 연구)

  • 민수홍;조의일;김옥삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.485-496
    • /
    • 1992
  • 본 연구에서는 제철, 제강공정에서 많이 사용하고 있는 C22FR1.4형의 주형을 상사적으로 축소시킨 주철제(GC25) 주형에 순알루미늄(순도99%)의 주물을 용입하여 응고 및 냉각 과정의 주물 및 주철제 주형에 미치는 열의 영향에 관하여 2차원 비정상 열전도 문제를 경계요소법으로 해석하고 실험을 통하여 검증하였다.

Development of a Dynamic Model for Water Quality Simulation during Unsteady Flow in Water Distribution Networks (부정류 흐름에서 상수관망 수질해석을 위한 동역학적 모형의 개발)

  • Choi, Doo-Yong;Cho, Won-cheol;Kim, Do-Hwan;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.609-617
    • /
    • 2012
  • A dynamic water quality model is presented in order to simulate water quality under slowly varying flow conditions over time. To improve numerical accuracy, the proposed model uses a lumped system approach instead of extended period simulation, unlike the other available models. This approach can achieve computational efficiency by assuming liquid and pipe walls to be rigid, unlike the method of characteristics, which has been successfully implemented in rapidly varying flows. The discrete volume method is applied to resolve the advection and reaction terms of the transport equation for water quality constituents in pipes. Numerical applications are implemented to the pipe network examples under steady and unsteady conditions as well as hydraulic and water quality simulations. The numerical results are compared with EPANET2, which is a widely used simulation model for a water distribution system. The model results are in good agreement with EPANET2 for steady-state simulation. However, the hydraulic simulation results under unsteady flows differ from those of EPANET2, which causes a deviation in water quality prediction. The proposed model is expected to be a component of an integrated operation model for a water distribution system if it is combined with a computational model for rapidly varying flows to estimate leakage, pipe roughness, and intensive water quality.

Digital Redesign of Gust Load Alleviation System using Control Surface

  • Tak, Hyo-Sung;Ha, Cheol-Keun;Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.675-679
    • /
    • 2005
  • This paper deals with the problem of gust load alleviation in active control for the case that aeroelasticity takes place due to interaction between wing structure and aerodynamics on wing when aircraft meets gust during flight. Aeroservoelasticity model includes wing structure modeled in FEM, unsteady aerodynamics in minimum state approximate method, and models of actuator and sensors in state space. Based on this augmented model, digitally redesigned gust load alleviation system is designed in sampled-data control technique. From numerical simulation, this digital control system is effective to gust load on aircraft wing, which is shown in transient responses and PSD analysis to random gust inputs.

  • PDF