• Title/Summary/Keyword: Unsteady aerodynamics

Search Result 112, Processing Time 0.038 seconds

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.193-200
    • /
    • 1999
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an unpwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way N-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and a 3-D F-5 wing were investigated.

  • PDF

Active Flow Control Using the Synthetic Jet Actuator (Synthetic Jet Actuator를 이용한 능동 유동 제어)

  • Noh Jongmin;Kim Chongam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL (리어제트 항공기 날개의 천음속 공탄성해석)

  • Tran, T.T.;Kim, D.H.;Kim, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

The analysis of flow over the bridge using preconditioned Navier-Stokes code (예조건화 Navier-Stokes 코드를 이용한 교각 유동해석)

  • Yoo, Il-Yong;Lee, Seung-Soo;Park, Si-Hyong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique (오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석)

  • Kim, Dong-Hyun;Kim,, Yo-Han;Kim, Myung-Hwan;Ryu, Gyeong-Joong;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Predictions on the Internal Loads and Structural Deflection in a Full-scale Experimental Bearingless Rotor

  • Eun, WongJong;Ryu, HanYeol;Shin, SangJoon;Kee, YoungJung;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.110-122
    • /
    • 2015
  • In this paper, the unsteady aerodynamics and blade structural dynamics of an experimental bearingless rotor were analyzed. Due to the multiple load path and nonlinear behavior of a bearingless rotor, sophisticated structural modeling and structural-aerodynamic coupled analysis is required. To predict the internal load and deformation of an experimental bearingless rotor, trim analysis was implemented. The results showed good agreement when compared with those predicted by CAMRAD II the rotorcraft comprehensive analysis. It is possible to extend the present structural-aerodynamic combined analysis to further advanced configurations of the bearingless rotor in the future.

Influence of a rear spoiler on a squareback car wake (리어 스포일러 장착에 의한 자동차 후류의 변화 연구)

  • Baek, Seung-Jin;Oh, Min-Soo;Lee, Jung-Ho;Kim, Moo-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1825-1829
    • /
    • 2004
  • A numerical simulation was performed of flow behind a squareback car with a rear spoiler. Influence of the rear spoiler on drag force has been studied. A lattice Boltzmann method was utilized to portray the unsteady aerodynamics of wake flows. The pressure distributions were employed to examine the vortex formation mode against the rear spoiler. It was found that the separation flow at roof end and c-pillar makes three dimensional vortex structures and the rear spoiler increases pressure on the rear glass surface.

  • PDF

Flutter Suppression of 2-D Wing/Store Model (2차원 날개/스토어 모델의 플러터 억제)

  • Bae, Jae-Sung;Kim, Do-Hyung;Yang, Seung-Man;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1197-1201
    • /
    • 2001
  • Flutter suppression of a wing/store model is investigated. An aircraft wing with a store is modeled as a 2-D typical section. Unsteady aerodynamics of the wing/store model are computed by using Doublet Hybrid Method(DHM) in the frequency-domain, and are approximated by Minimum-state(MS) approximation. LQG controller is used to suppress the flutter of the wing/store model and the aeroelastic characteristics of the closed-loop system are investigated. The flutter characteristics of the wing/store model are improved and the flutter speed is increased up to about 16 %.

  • PDF

Flutter Suppression of Wing/store Model (날개/스토어 모델의 플러터 억제)

  • Bae, Jae-Sung;Kim, Do-Hyung;Yang, Seung-Man;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.493-501
    • /
    • 2002
  • Flutter suppression of a wing/store model is investigated. An aircraft wing with a store is modeled as a 2-D typical section. Unsteady aerodynamics of the wing/store model are computed by using doublet hybrid method(DHM) in the freauency-domain, and are approximated by minimumstate(MS) approximation. LQG controller is used to suppress the flutter of the wing/store model and the aeroelastic characteristics of the closed-loop system are investigated. The flutter characteristics of the wing/store model are improved and the flutter speed is increased up to about 24 %.